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Experimental Data: 2013
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Experimental Data and Analysis: 2014

Reactions to r = 0.2%%% (BICEP2 Coll., Phys. Rev. Lett. 112 (2014) 241101)

> initially: many many papers trying to explain/predict BICEP2 signal
> later: all the signal could be just dust (or not)
e M. J. Mortonson and U. Seljak, arXiv:1405.5857
e R. Flauger, J. C. Hill and D. N. Spergel, JCAP 1408 (2014) 039

= we need more data from Planck
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Experimental Data and Analysis: 2014

Reactions to r = 0.2%%% (BICEP2 Coll., Phys. Rev. Lett. 112 (2014) 241101)

> initially: many many papers trying to explain/predict BICEP2 signal
> later: all the signal could be just dust (or not)

e M. J. Mortonson and U. Seljak, arXiv:1405.5857
e R. Flauger, J. C. Hill and D. N. Spergel, JCAP 1408 (2014) 039

= we need more data from Planck

a. W. N. Colley and J. R. Gott, arXiv:1409.4491
The main uncertainty seems to be the amplitude of the dust signal in the
BICEP2 map. The previous studies have considered the power spectrum
of the B-modes. But this leaves out the other information in the maps.
Looking at the power spectrum alone is unsufficient.
Therefore they designed a study which does not depend on the amplitude
of the dust signal at all (fore more details check the article).

r =0.11 + 0.04 (based on preliminary public Planck dust data)
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Experimental Data and Analysis: 2014

Reactions to r = 0.2%%% (BICEP2 Coll., Phys. Rev. Lett. 112 (2014) 241101)

> initially: many many papers trying to explain/predict BICEP2 signal
> later: all the signal could be just dust (or not)

e M. J. Mortonson and U. Seljak, arXiv:1405.5857
e R. Flauger, J. C. Hill and D. N. Spergel, JCAP 1408 (2014) 039

= we need more data from Planck

a. W. N. Colley and J. R. Gott, arXiv:1409.4491
r=0.11 + 0.04 (based on preliminary public Planck dust data)

> Planck collaboration official dust data (arXiv:1409.5738)

Antonio Racioppi Inflation and classical scale invariance



Introduction Experimental Data
Inflation Recipe
Classical scale invariance
Theoretical framework

Experimental Data and Analysis: 2014

Reactions to r = 0.2%%% (BICEP2 Coll., Phys. Rev. Lett. 112 (2014) 241101)

> initially: many many papers trying to explain/predict BICEP2 signal
> later: all the signal could be just dust (or not)

e M. J. Mortonson and U. Seljak, arXiv:1405.5857
e R. Flauger, J. C. Hill and D. N. Spergel, JCAP 1408 (2014) 039

= we need more data from Planck

a. W. N. Colley and J. R. Gott, arXiv:1409.4491
r =0.11 + 0.04 (based on preliminary public Planck dust data)

b. Planck collaboration official dust data (arXiv:1409.5738) analized

e C. Cheng, Q. G. Huang and S. Wang, arXiv:1409.7025
e L. Xu, arXiv:1409.7870

= the BICEP?2 signal is due to dust (based on power spectrum study)
> a. has a better study but b. have used the most recent data.
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Experimental Data and Analysis: 2014

However a.(M) and b.(=) are compatible results.

04
03

0i1 /\
| l/wl I)

0.0

ng

094 0.96 0.98 1

It is too soon for taking final conclusion.
Hopefully Gert will give soon a seminar on this topic... &
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Recipe for studying inflation

M2
s= [axvmg ("FR4 L) o= 00070 V(o)

1. Compute the slow roll parameters

o - (2

_ a2 V(9
n(®) = M V()

Inflation takes place when ¢, n <1

2. Compute the field value at the end of inflation ¢. from

€(ge) =1
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Recipe for studying inflation

3. Compute ¢, N e-folds before the end of inflation,
Lo ddf
Me S /2¢(9")

N =

4. Compute r and ns at N = [50,60] by

r = 16¢e(¢")
ns = 1-—6¢(¢")+2n(¢")
5. From the scalar amplitude measurement: A2 = #’izw) ~2.45x107°
P
fix the overall normalization of V:
4
V(") ~ (1.94 X 10%° GeV) o
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Classical scale invariance

>

| do not want to discuss why to choose classical scale
invariance, its meaning, pros and cons

v

Let us just threat it as a possible configuration of the
parameters space

v

We consider a configuration in which the classical Lagrangian
has all the dimensionful parameters set to be zero

v

Therefore mass terms must be generated at quantum level
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Introduction

Dimensional transmutation

1 min
Tree level: Vy = ZAW“ = Vi@ =vs=0& m, =0
dXs
RGE : =
P = ding
= if: By, ~ const. (at least in some region) and >0 =
Ao Inp 1108
= | dhe=bi, / d(Inp) e
/\¢0 In g
= )\¢ Z)\qgo +ﬁ,\¢ In — LY
= fixing Ay, =0 oxio
1 Ao(p > o) >0
= |Ae = fBr,In—|— {
¢ ¢ o Ap(p < po) <0 w
‘ 2
OO ﬂN;; d)O
One loop: VR 1loop = /3% In ‘qf' = vy o j, = NG (o < o)

Inflation and classical scale invariance
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Coleman-Weinberg inflation

> Already the first papers on inflation considered CW inflation:
Linde, Phys. Lett. B108 (1982) 389-393, Phys. Lett. B114 (1982) 431; Albrecht and Steinhardt, Phys.
Rev. Lett. 48 (1982) 1220-1223; Ellis et al., Nucl. Phys. B221 (1983) 524, Phys. Lett. B120 (1983) 331.
> This idea has been (is being) extensively studied in the context of
o GUT:
Langbeine et al, Mod.Phys.Lett. A1l (1996) 631-646; Gonzalez-Diaz, Phys.Lett. B176 (1986)
29-32; Yokoyama, Phys.Rev. D59 (1999) 107303; Rehman et al., Phys.Rev. D78 (2008) 123516.

[ U(l)B,L:
Barenboim et al., Phys.Lett. B730 (2014) 81-88; N. Okada and Q. Shafi, 1311.0921.
e SU(N):
Elizalde et al., 1408.1285.
» They all suppose new gauge groups beyond the SM: NO NEED FOR IT!

» It can occur just due to running of some scalar quartic coupling, to
negative values at some energy scale due to couplings to other scalar
fields, generating non-trivial physical potentials.
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Multiple Point Criticality Principle
RGEs

Study of U(¢)

Lagrangian

S = / d*xv/—g [f(¢)R+£maner] f(¢) = 5—%2

2
1 7 1 H
['matter = 5 #d)a ¢+ 58#778 'I’]+£Y -V
Ly = ys¢NN+y,nN°N
)‘<;/> 4 )‘4571 2,2 )‘n 4
vV = — Zen 2n
e A et

v

Full classical scale invariance — Mp dynamically

v

The running of Ay allows vy, #0 = ¢ = vy + ¢

S (B> Flptv) =Eulptve) 2 =

inflaton: ¢

N not needed for CW inflation itself, but for our particular case

vy
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From the Jordan frame to the Einstein frame

» Conformal transformation:

Q(¢)* = Wf@ﬁ)

» The scalar potential in the Einstein frame is given by

V(9) _ Xs(0)¢"

Q(¢)t 49(0)

» Canonically normalised field x

ax _ . [F(0) +3F(9)”
dop " 2f(¢)?
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Scalar potential U(¢)

» Since we live in the minimum with non-zero Planck scale: ¢ = ¢ + vg.
Moreover during inflation = 0 — back to this point later.

V() = A (0 +vs)" 1. M
(o) = 3(p+ vs) ¢

v

Slow-roll parameters

_ MU 1Y
T2 \Udx/de
po MELU MR T (dX) e (dxT [ (dx)
U dx? U do do dp

1 " dy dx
N = / 22 where dp = —X
V2Mp J oy Ve Y7 dx/dy

> now we can apply the recipe given before

v
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Multiple Point Criticality Principle

A generic full classical scale invariant theory implies:
> Vo~ Ajdigjordi
» A=0

Therefore problems at the minimum:

V(vi) =0 — OK: avoid eternal inflation
a.vi=0= .
Mp = 0 — unphysicall!

' V(vi) # 0 — bad: eternal inflation
b.vi#0= { Mp #0 — physical
Unless we also impose MPCP so that in addition to the trivial solution v; =0
we also get

Vi £ 0= V(vi) =0 — OK: avoid eternal inflation
! Mp # 0 — physical!

Inflation and classical scale invariance
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Multiple Point Criticality Principle

> Old concept. Used for predicting the Higgs mass from boundary
conditions at the Planck scale: Ay(Mp) = B, (Mp) =0
C. D. Froggatt, H. B. Nielsen, Phys.Lett. B368 (1996)

> Same idea already applied for Higgs inflation: Haba et al. 1406.0158
(tuning of top mass, scalar singlet and right handed neutrino couplings)

» MPCP is general feature for all full classical scale invariant models of
inflation.

Antonio Racioppi Inflation and classical scale invariance
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MPCP and U(¢)

> full classical scale invariance — U(vy) ~ 0

» induce the minimum in U via a minimum in A4.

U= 7)\
¢ 2 §¢

Therefore we need to impose:

i. Ag¢(ve) =0 — ensure a small vacuum energy after inflation
(condition on the RGE of \y)

ii. Ay(vg) =0 — minimum of A = minimum of U
condition on the (o} and yg: contribution crucial!
diti he RGE of Ay, and ys: N ibuti iall

Antonio Racioppi Inflation and classical scale invariance
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From R. N. Lerner, J. McDonald, Phys.Rev.D80:123507, 2009

In can be shown that the commutation relation for an arbitrary scalar ¢

oL — (dy\® .=
T = —.:w-g(ﬁ) N 0 ¢

o
o a2 (A ; R .
(.77 = @ (Gh) Vo8 0.9 =in(% - )
This implies that the scalar propagator will be suppressed by a factor
c(¢) = —~—=. In our case
(%) iy
14 227
Co £

= 2
L+ (66 +1)%5

When calculating the RG equations or Coleman-Weinberg potential, one
suppression factor is inserted for each ¢ propagator in a loop,

Antonio Racioppi Inflation and classical scale invariance
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At one-loop level, the S-functions for the scalar coupling and the non-minimal
coupling of ¢ are given by

1

2
1

167° B, = 18X, + S€oAG, + 16)Any, — 64y,

1677 Bx, = 18205 + A5, + 16c, Moy — 64y,

1672 Bx,, = 4Co N5 + 6Xon(c2ho + An) + 8Xan(coys + vi) — 384y5yh
167°B,, = 16ys(coys + i),
1676y, = 16yn(coys + v2)

1
167° B, = bc,, (@ + 6) Ao
For numerical purposes

> neglect Ay in the RGEs
> ¢, €[0,0.0115] = ¢, ~ 1

Antonio Racioppi Inflation and classical scale invariance
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At one-loop level, the S-functions for the scalar coupling and the non-minimal
coupling of ¢ are given by

1
167°Br, = 5 Aon — 64y
1
167° By, = 18\ + 5/\5»7 + 16X,y — 64y;
16#25%1, = 4)‘3>n +6AgyAn + 8/\¢n()/425 + YS) - 384}’425)/721
167T2ﬂy¢ = 16y¢(yi + ys)a
167"25)/1; = 16y7,(y¢2> + yf,)

16m° B¢, =0
For numerical purposes

> neglect Ay in the RGEs = &4 ~ constant
> &4 €[0,0.0115] - ¢, ~ 1
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F
RGEs
Study of U(¢)

Minimum condition

» The B-functions are logarithmic derivatives of couplings: 8, = MZ’L’.
> Using = ¢:
By (ve) 1
No(vo) = =5 =0 = B (v)=0 =| X\, —64y;~0

> However this only ensures that ¢ = vy is a stationary point. To make it a
minimum, we need to impose A¢(vg) > 0

v d (ﬁ)\(p) :ldﬁ)\(p By

¢~ du \

nodp u?

5Q\¢(V¢)
Ve

g(vp) =

€oom [12A,7 + (8 = 3V2) Ay, — 48(1 + x/i)yﬁ] >0

Antonio Racioppi Inflation and classical scale invariance
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More on the parameters

> £s € [0,0.0115] = vy > Mp
= we need to assume that quantum gravity is weakly coupled and
subdominant

> 0 < A, < 37 for perturbativity and in order to avoid a VEV for n (DM?).
Ay fixed by the constraint on U(p").

> y, = 0. We wanted 7) to be a superheavy DM candidate (WIMPZILLA).
Unluckily it is too heavy even for a WIMPZILLA. Negligible relic density.
(the case y;, # 0 is under study)

> gy, Yo are fixed via the boundary condition Ag(vg) = B, (ve) =0

» 1 = 0 during inflation

Antonio Racioppi Inflation and classical scale invariance
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More on U(¢)

» The slow-roll parameters

(%) (Me + \/Esp)?
N, 2(14664)¢?

_ So(vs + )As + (vo + 9)AG]
Ap(1+6€5)
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Shape of potential

U

5= / d*x/~E[F(6)R + Lnava]
(o) = "

Lumatter = same as before

> Such a shape allows for two different, generic types of inflation:

i. Small-field inflation, when ¢ rolls forward down to vy: ®

ii. Large-field (chaotic) inflation, when ¢ rolls back down to v4: ®

Antonio Racioppi Inflation and classical scale invariance
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Results

N € [50,60]
€4 € [0,0.0115]

Planck bound
B BICEP2 bound

V:m2¢2 .
M large field ]
B small field [
010f
00sf
O.w7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

092 093 094 09 09 097 098 0.99 1.00

Ns

Antonio Racioppi Inflation and classical scale invariance



Results |
Results 11
Results 111

Results

Other results

0.35 T T T T T T T T T

In the allowed region:
> large field case favoured

> my ~ 108 GeV

> gy ~ 1071

0.20
> &~ 1077 ) \

01sf ]
> my, ~ Mp [ i
— 1 = 0 during inflation 010f 1
> Tru ~ 10'5%° GeV k ]
005} p
Ow L S S S S S S B N
092 093 084 095 09 097 0% 099 100

Ns
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Results

Results and new constraints

N € [50,60]
&4 €[0,0.0115]

1409.7870
N 1409.4491

V = m¢? -
Ml large field
W small field

0.00 ! ! P W | .
092 093 094 095 096 097 098 0.99 1.00

ns
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Conclusions

» We constructed a full classical scale invariant model

» MPCP is the guideline to combine full classical scale
invariance and inflation

» Found region in agreement with BICEP2 & Planck
> large field case favoured
» Found region in agreement with the new data analysis

» Predictive model that can be confirmed or ruled out

Antonio Racioppi Inflation and classical scale invariance



Conclusions

Thank you!
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Backup slides
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Conclusions

Uy around v,

U,/Gev*

1.5x10%
1.0x10%

5.0x10%

e M

L Il L L L
-10 Pend (] Pend

» Around the VEV, we can expand:

Xo(9) = Mo(v) + ()0 vo) 3 N(ve)(6 — v )’ + O()

Antonio Racioppi Inflation and classical scale invariance
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Conclusions
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