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Cosmological Observables

All current cosmological data sets are consistent with a 6-parameter model (ΛCDM):

I {Ωb,ΩCDM, h, τ} describe the homogeneous background

I {As , ns} characterize the primordial density fluctuations

Planck 2015 Data

Label Definition Physical Origin Value
Ωbh

2 Baryon Fraction Baryogenesis 0.02222± 0.00023

ΩCDM DM Fraction TeV-Scale Physics (?) 0.1197± 0.0022

τ Optical Depth First Stars 0.078± 0.019

h Hubble Parameter Cosmological Epoch 0.6731± 0.0096

ln(1010As) Scalar Amplitude Inflation (3.089± 0.036)

ns Scalar Index Inflation 0.9655± 0.0062

I flat universe: Ωb + ΩCDM + ΩΛ ≡ 1

I ΩΛ Dark Energy fraction

I As ' 2.14× 10−9
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Cosmological Observables

The minimal set of parameters is not fixed, but is dictated by the quality of the
available data and our knowledge/ignorance of fundamental physical
parameters and interactions. Future possible parameters are:

Label Definition Physical Origin
Ωk Curvature Initial Conditions

Σmν Neutrino Mass Beyond-SM Physics

w Dark Energy Equation of State Unknown

Nν Neutrino-like Species Beyond-SM Physics

YHe Helium Fraction Nucleosynthesis

αs Scalar “Running” Inflation

At Tensor Amplitude Inflation

nt Tensor Index Inflation

fNL Non-Gaussianity Inflation (?)

S Isocurvature Inflation

Gµ Topological Defects Phase Transition
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Why inflation?

It solves

I Flatness Problem: Present observations show that the universe is very
nearly spatially flat. To explain the geometric flatness of space today
therefore requires an extreme fine-tuning in a Big Bang cosmology
without inflation.

I Horizon Problem: Observations of the CMB imply the existence of
temperature correlations across distances on the sky that corresponded to
super-horizon scales at the time when the CMB radiation was released.
Yet there is no way to establish thermal equilibrium if these points were
never in causal contact before last scattering.

I . . .

(cft Kristjan’s seminar)
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Physics of inflation

The Friedmann equations governing the scale factor a(t) of a spatially flat
universe with Friedmann-Robertson-Walker (FRW) metric

δs2 = −δt2 + a(t)2δx2

are

H2 =

„
ȧ

a

«2

=
1

3M2
P

ρ

Ḣ + H2 =
ä

a
= − 1

6M2
P

(ρ+ 3p)

What drives the accelerated expansion of the early universe?

Inflation requires a source of negative pressure p and an energy density ρ which

dilutes very slowly allowing for an exit into the standard Big Bang cosmology at

later times.
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Single-field slow-roll inflation

I Leff(φ) = 1
2
(∂φ)2 − V (φ)

homogeneous−−−−−−−→
isotropic

Leff(φ) = 1
2
φ̇2 − V (φ)

I EoM:

H2 =
1

3M2
P

„
1

2
φ̇2 + V (φ)

«
ä

a
= − 1

3M2
P

“
φ̇2 − V (φ)

”
φ̈+ 3Hφ̇+ V ′(φ) = 0

I ä > 0 ⇔ V � φ̇2 ⇐ |φ̈| � |V ′|.
I Quantitatively, inflation requires smallness of the slow-roll parameters:

ε ≡ − Ḣ

H2
=

M2
P

2

φ̇2

H2
≈

M2
pl

2

„
V ′

V

«2

� 1 |η| ≈ M2
pl

˛̨̨̨
V ′′

V

˛̨̨̨
� 1

I Approx. solution:

a(t) ≈ a(0)eHt , H ≈ const ⇒ Exponential expansion!
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Single-field slow-roll inflation

I Once these constraints are satisfied, the inflationary process (and its
termination) happens generically for a wide class of models:

a(t) ≈ a(0)eHt , H ≈ const

I For inflation to successfully address the Big Bang problems, one must
simply ensure that the inflationary process produces a sufficient number
of these ‘e-folds’ of accelerated expansion

Ne ≡ ln

„
a(tfinal)

a(tinitial)

«
I A typical range for the required number of e-folds is Ne ∈ [50, 60]

I for more details see Kristjan’s seminar
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SVT Decomposition

We define perturbations around the homogeneous solutions for φ̄(t) and ḡµν(t),

φ(t, x) = φ̄(t) + δφ(t, x) , gµν(t, x) = ḡµν(t) + δgµν(t, x)

where

δs2 = gµν δx
µδxν

= −(1 + 2Φ)δt2 + 2aBiδx
iδt + a2[(1− 2Ψ)δij + Eij ]δx

iδx j

We can decompose the perturbations into independent scalar (S), vector (V)
and tensor (T) modes. This SVT decomposition is most easily described in
Fourier space

Qk(t) =

Z
δ3x Q(t, x) e ik·x , Q ≡ δφ, δgµν
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SVT Decomposition

δs2 = −(1 + 2Φ)δt2 + 2aBiδx
iδt + a2[(1− 2Ψ)δij + Eij ]δx

iδx j

In real space, the SVT decomposition of the metric perturbations

Bi ≡ ∂iB − Si , where ∂ iSi = 0

Eij ≡ 2∂ijE + 2∂(iF j) + hij , where ∂ iFi = 0 , hi
i = ∂ ihij = 0

I perturbations of each type evolve independently (at the linear level)

I δφ and δgµν are gauge(frame)-dependent. Physical questions therefore
have to be studied in a fixed gauge or in terms of gauge-invariant
quantities. An important gauge-invariant quantity is the curvature
perturbation on uniform-density hypersurfaces

−ζ ≡ Ψ +
H

ρ̇
δρ

where ρ is the total energy density of the universe.
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S(calar) perturbations

In a gauge where δρφ = 0 all scalar degrees of freedom can be expressed by

gij = a2(t)[1 + 2ζ]δij

(the fluctuations in gµ0 are related to ζ by Einstein’s equations)
A crucial statistical measure of ζ is the power spectrum of ζ

〈ζkζk′〉 = (2π)3 δ(k + k′)
2π2

k3
Ps(k)

The scale-dependence of the power spectrum is defined by

ns − 1 ≡ d ln Ps

d ln k
(ns = 1⇔ scale invariance)

The power spectrum is often approximated by a power law form

Ps(k) = As(k?)

„
k

k?

«ns (k?)−1+ 1
2
αs (k?) ln(k/k?)

where k? is the pivot scale and αs ≡ dns/d ln k the running of ns .
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S(calar) perturbations

I If ζ is Gaussian then Ps(k) contains all the statistical information.

I Primordial non-Gaussianity is encoded in 〈ζkζk′ζk′′ . . . 〉.
I In single-field slow-roll inflation the non-Gaussianity is predicted to be

small

I non-Gaussianity can be significant in multi-field models or in single-field
models with non-trivial kinetic terms and/or violation of the slow-roll
conditions.
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V(ector) perturbations

The vector perturbations Si and Fi are distinguished from the scalar
perturbations B, Ψ and E as they are divergence-free, i.e. ∂ iSi = ∂ iFi = 0.

One may show that vector perturbations on large scales are redshifted away by
Hubble expansion (unless they are driven by anisotropic stress). In particular,
vector perturbations are subdominant at the time of recombination.

Since CMB polarization is generated at last scattering the polarization signal is
dominated by scalar and tensor perturbations.
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T(ensor) perturbations

They are uniquely described by a gauge-invariant metric perturbation hij

gij = a2(t)[δij + hij ] , ∂jhij = hi
i = 0

Physically, hij corresponds to gravitational wave fluctuations.
The power spectrum for the two polarization modes of hij ≡ h+e+

ij + h×e×ij ,

h ≡ h+, h×, is defined as

〈hkhk′〉 = (2π)3 δ(k + k′)
2π2

k3
Pt(k)

and its scale-dependence is defined as

nt ≡
d ln Pt

d ln k
i .e. Pt(k) = At(k?)

„
k

k?

«nt (k?)

CMB polarization measurements are sensitive to the ratio

r ≡ Pt

Ps
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Quantum fluctuations

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Quantum fluctuations during inflation are the source of Ps(k) and Pt(k).
They are created on sub-horizon scales. While comoving scales, k−1, remain
constant the comoving Hubble radius during inflation, (aH)−1, shrinks and the
perturbations exit the horizon. Causal physics cannot act on superhorizon
perturbations and they freeze until horizon re-entry at late times.
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Quantum fluctuations

In spatially-flat gauge, perturbations in ζ are related to perturbations in δφ

ζ = −H
δρ

ρ̇
≈ slow roll−−−−→≈ −H

δφ

φ̇
≡ −Hδt

The power spectrum of ζ and δφ are therefore related

〈ζkζk′〉 =

„
H

φ̇

«2

〈δφk δφk′〉 ≈ slow roll−−−−→≈ (2π)3

„
H

φ̇

«2

δ(k + k′)
2π2

k3

„
H

2π

«2

The r.h.s. is to be evaluated at horizon exit of a given perturbation k = aH.
Therefore φ fluctuations produce the following power spectrum for ζ

Ps(k) =

„
H

φ̇

«2„
H

2π

«2
˛̨̨̨
˛
k=aH

In addition, quantum fluctuations during inflation excite tensor metric
perturbations hij

Pt(k) =
8

M2
P

„
H

2π

«2
˛̨̨̨
˛
k=aH
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Slow roll predictions

(single field) slow-roll approximation ⇒ Ps(k) and Pt(k) ↔ V (φ).

Ps(k) =
1

24π2M4
P

V

ε

˛̨̨̨
k=aH

, ns − 1 = 2η − 6ε

Pt(k) =
2

3π2

V

M4
P

˛̨̨̨
k=aH

, nt = −2ε , r = 16ε

We also point out the existence of a slow-roll consistency relation

r = −8nt

Measuring Pt (→ V ), Ps (→ V ′), ns (→ V ′′) and αs (→ V ′′′) allows a
reconstruction of the inflaton potential as a Taylor expansion around φ?
(corresponding to the time when fluctuations on CMB scales exited the horizon)

V (φ) = V |? + V ′
˛̨
?

(φ− φ?) +
1

2
V ′′
˛̨
?

(φ− φ?)2 +
1

3!
V ′′′

˛̨
?

(φ− φ?)3 + · · ·

where (. . . )|? = (. . . )|φ=φ?
.
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Polarizations

Quadrupole
Anisotropy

Thomson 
Scattering

e–

Linear 
Polarization

COLD

HOT Because the anisotropies in the CMB temperature
are sourced by primordial fluctuations, we expect the
CMB anisotropies to become polarized via Thomson
scattering.

The polarization of CMB anisotropies is generated
only by scattering therefore we can use polarization in-
formation to distinguish the different types of primordial
perturbations.

If a free e− ‘sees’ an incident radiation that is isotropic, then the outgoing

radiation remains unpolarized because orthogonal polarization directions cancel

out. However, if the incoming radiation field has a quadrupole component, a

net linear polarization is generated via Thomson scattering. Since the

temperature anisotropies are created by primordial fluctuations, a component

of the polarization should be correlated with the temperature anisotropy.
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Characterization of the radiation field

The anisotropy field is defined in terms of a 2× 2 intensity tensor Iij(n̂), where
n̂ denotes the direction on the sky. The components of Iij are defined relative
to two orthogonal basis vectors ê1 and ê2 perpendicular to n̂.

I Linear polarization is then described by the Stokes parameters
Q = 1

4
(I11 − I22) and U = 1

2
I12

I the temperature anisotropy is T = 1
4
(I11 + I22)

I The polarization magnitude and angle are
P =

√
Q2 + U2 and α = 1

2
tan−1(U/Q)

T is invariant under a rotation in the plane perpendicular to n̂ and hence may
be expanded in terms of scalar (spin-0) spherical harmonics

T (n̂) =
X
`,m

aT
`m Y`m(n̂) .
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Characterization of the radiation field

Q and U transform under rotation by an angle ψ as a spin-2 field
(Q ± iU)(n̂)→ e∓2iψ(Q ± iU)(n̂). The harmonic analysis of Q ± iU therefore
requires expansion on the sphere in terms of tensor (spin-2) spherical harmonics

(Q + iU)(n̂) =
X
`,m

a
(±2)
`m [±2Y`m(n̂)] .

Instead of a
(±2)
`m it is convenient to introduce the linear combinations

aE
`m ≡ −

1

2

“
a

(2)
`m + a

(−2)
`m

”
, aB

`m ≡ −
1

2i

“
a

(2)
`m − a

(−2)
`m

”
.

Then one can define two scalar (spin-0) fields instead of the spin-2 quantities
Q and U

E(n̂) =
X
`,m

aE
`m Y`m(n̂) , B(n̂) =

X
`,m

aB
`m Y`m(n̂) .
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E - and B-modes

E < 0 E > 0

B < 0 B > 0

E -polarization is characterized as a curl-free mode with polarization vectors
that are radial around cold spots and tangential around hot spots on the sky.
B-polarization is divergence-free but has a curl: its polarization vectors have
vorticity around any given point on the sky.
E and B are both invariant under rotations, but they behave differently under
parity transformations.
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E - and B-modes

The symmetries of temperature and polarization (E - and B-mode) anisotropies
allow four types of correlations: the autocorrelations of temperature
fluctuations and of E - and B-modes denoted by TT , EE , and BB, respectively,
as well as the cross-correlation between temperature fluctuations and E -modes:
TE . All other correlations (TB and EB) vanish for symmetry reasons.
The angular power spectra are defined as rotationally invariant quantities

CXY
` ≡ 1

2`+ 1

X
m

〈aX
`maY

`m〉 , X ,Y = T ,E ,B

The dependence on cosmological parameters of each of these spectra differs,
and hence a combined measurement of all of them greatly improves the
constraints on cosmological parameters.
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A smoking gun

It can be shown that:

i) scalar (density) perturbations create only E -modes and no B-modes.

ii) vector (vorticity) perturbations create mainly B-modes.

iii) tensor (gravitational wave) perturbations create both E -modes and
B-modes.

The fact that scalars do not produce B-modes while tensors do is the basis for
the often-quoted statement that detection of B-modes is a smoking gun of
tensor modes, and therefore of inflation.
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Power spectrum

A power-law parameterization of the power spectrum is employed in

Ps(k) = As(k?)

„
k

k?

«ns (k?)−1+ 1
2
αs (k?) ln(k/k?)

At k? = 0.002 Mpc−1, Planck 2015 Data says:

As = (2.14± 0.05)× 10−9

ns = 0.9655± 0.0062

αs =
dns

d ln k
= −0.008± 0.016

Antonio Racioppi Inflation and CMB polarizations



Introduction
Theory of Perturbations

Observational constraints
Conclusions

Power spectrum
r vs. ns
r vs. ns . αS 6= 0

r vs. ns

lowP: ` < 30, BAO: Baryon acoustic oscillations
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r vs. ns . αS 6= 0

∗ colored •: Planck TT+lowP

∗ black: Planck TT+lowP+lensing+BAO

∗ dashed: BICEP2/Keck/Planck

∗ blue: αs = 0

I Allowing for the running of nS the allowed region increases considerably.
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Conclusions

I The fact that scalars do not produce B-modes while tensors do is the
basis for the often-quoted statement that detection of B-modes is a
smoking gun of tensor modes, and therefore of inflation.

I The latest results for r vs. ns suggest that we should give up the idea of a
simple single field inflaton scenario and look for more complicated
configurations: multifield inflation, αS 6= 0, . . .
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