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3 Cosmology

A homogenous and isotropic universe is described by the
Friedmann-Lemaı̂tre-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

]
Matter is a perfect fluid:

Tµν = diag(ρ,−p,−p,−p)



4 Cosmology

Friedmann equations

H2 ≡
(
ȧ

a

)2

=
1

3M2
P
ρ−

k

a2

ä

a
= −

1
6M2

P
(ρ+ 3p) = −

1
6M2

P
ρ(1 + 3w),

where the reduced Planck mass
M2

P =
1

8πG
= 2.4× 1018 GeV

Continuity equation

ρ̇ = −3H(ρ+ p) = −3Hρ(1 +w)



5 Critical Density

From the Friedmann equation,

k = a2

(
1

3M2
P
−H2

)
,

thus k = 0 if
ρ = ρc = 3M2

PH
2

orΩ = 1, where the density parameter

Ω =
ρ

ρc
=

1
3M2

P

ρ

H2 (1)



6 Problems of Big Bang Cosmology

Why is the Universe homogenous?

Conformal Time Today

CMB

Big Bang

Past Light-Cone



7 Problems of Big Bang Cosmology

Why is the Universe homogenous?

Why is the Universe flat?

dΩ

d lna
= (1 + 3w)Ω(Ω− 1)

Ω = 1 is an unstable fixed point for 1 + 3w > 0

|Ω− 1| 6 O(10−61) at Planck time



8 Problems of Big Bang Cosmology



9 Problems of Big Bang Cosmology

Why is the Universe homogenous?

Why is the Universe flat?

dΩ

d lna
= (1 + 3w)Ω(Ω− 1)

Ω = 1 is an unstable fixed point for 1 + 3w > 0

|Ω− 1| 6 O(10−61) at Planck time
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10 Vacuum Energy & Inflation

For pΛ = −ρΛ or w = −1, one has ρ̇ = 0

The scale factor grows as

a(t) ∝ eHt,

where H =
√

ρΛ
3M2

P
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12 Problems of Big Bang Cosmology

Conformal Time Today

CMB

Big Bang

Past Light-Cone

Reheating

Inflation
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13 Problems of Big Bang Cosmology



14 Inflaton Density as Vacuum Energy

Action for gravity and scalar field φ

S =

∫
d4x
√
−g

(
M2

P
2
R+

1
2
gµν∂µφ∂νφ− V(φ)

)

Energy density & pressure

ρ =
1
2
φ̇2 + V(φ)

p =
1
2
φ̇2 − V(φ)

w =
p

ρ
≈ −1 if φ̇� V(φ)



15 Inflaton Density as Vacuum Energy

Equation of motion:

φ̈+ 3Hφ̇−∇2φ+ V(φ) ′ = 0

Friedmann equation

H2 =
1

3M2
P

(
1
2
φ̇2 + V(φ)

)



16 Slow-Roll Conditions

Equation of motion:

φ̈+ 3Hφ̇+ V(φ) ′ = 0

Friedmann equation

H2 =
1

3M2
P

(
1
2
φ̇2 + V(φ)

)

φ̇2 � V(φ)

|φ̈|� |3Hφ̇|, |V(φ) ′|



17 Slow-Roll Conditions

The slow-roll parameters are

ε(φ) =
1
2
M2

P
V ′(φ)

V(φ)

η(φ) =M2
P
V ′′(φ)

V(φ)

For slow-roll it is necessary to have ε� 1 and η� 1



18 Slow-Roll Inflation

Friedmann equations give

3Hφ̇ ≈ −V(φ) ′

H2 ≈ V(φ)
3M2

P

and
ä

a
= −

1
6M2

P
(ρ+ 3p) = H2(1 − ε),

where

ε ≡ 3
2
(w+ 1) =

1
2M2

P

φ̇2

H2 ≈
1
2
M2

P
V ′(φ)

V(φ)



19 Slow-Roll Inflation

Daniel Baumann



20 Number of e-Folds

The number of e-folds is given by

N∗ =

∫ t∗
te

dtH =

∫ t∗
te

dφ
H

φ̇
≈ 1
M2

P

∫φ∗

φe

dφ
V(φ) ′

V(φ)

Minimal required number of e-folds is N = 50 . . . 60



21 Minimal Required Number of e-Folds



22 Density Variations

Planck Collaboration



23 Quantum Fluctuations



24 Quantum Fluctuations

Classical field and fluctuation: φ→ φ+ϕ

ϕ is approximately free quantum field

For Fourier components of ϕ,

ϕ̈k + 3Hϕ̇k +
k2

a2ϕk = 0,

where k
a ∼ λ−1

For ak � H−1, the field behaves as Klein-Gordon

For ak � H−1, there is overdamping and the
fluctuation ‘freezes’



25 Quantum Fluctuations

Comoving 
 Horizon

Time  [ln a]

INFLATION HOT BIG BANG

Comoving Scales  



26 Power Spectra
The power spectra of scalar and tensor perturbations are
parametrised by

PR(k) = As

(
k

k∗

)ns−1+ 1
2
dns
d lnk ln k

k∗+...

Pt(k) = At

(
k

k∗

)nt−1+ 1
2
dnt
d lnk ln k

k∗+...

In the slow-roll approximation

PR(k) =

(
H

2π

)
k=aH

Pt(k) =

(
16H2

πM2
P

)
k=aH
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27 Power Spectra
The power spectra of scalar and tensor (gravity wave)
perturbations are parametrised by

PR(k) = As

(
k

k∗

)ns−1+ 1
2
dns
d lnk ln k

k∗+...

Pt(k) = At

(
k

k∗

)nt−1+ 1
2
dnt
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k∗+...

In the slow-roll approximation

As ≈
V

24π2M4
Pε

ns ≈ 1 − 6ε+ 2η

r =
PR(k)

Pt(k)
≈ 16ε = −8nt
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28 Recipe for Slow-Roll Inflation

Calculate the field value at the end of inflation:

ε(φe) =
M2

P
2

(
V ′(φe)

V(φe)

)2

= 1

Calculate φ∗ from the required number of e-folds N:

N =
1
MP

∫φ∗

φe

dϕ√
2ε(ϕ)



29 Recipe for Slow-Roll Inflation

Calculate r and ns for e-folds N = [50, 60]:

r = 16ε(φ∗)

ns = 1 − 6ε(φ∗) + 2η(φ∗),

From the amplitude of scalar perturbations

A2
s =

1
M4

P

V(φ∗)

24π2ε(φ∗)
≈ 2.45× 10−9

fix the normalisation of V :

V(φ∗) ≈ (1.94× 1016 GeV)4 r

0.12



30 Recipe for Slow-Roll Inflation

10 Planck Collaboration: Constraints on inflation

HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
⇣
1010As

⌘
3.133+0.032

�0.028 3.137+0.027
�0.028 3.143+0.027

�0.026 3.089+0.024
�0.027

ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+tensor model from Planck combined with other data
sets. The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

CL for the WMAP 9-year data and is further excluded by CMB
data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-` data for
N⇤ . 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the

95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
entropy generation priors allowing N⇤ < 50 could reconcile this
model with the Planck data.

Planck: ns = 0.9603± 0.0073, r < 0.12



31 Monomial Chaotic Inflation

Monomial potential

V = αφn

The slow-roll parameters are

ε(φ) =
1
2
M2

P
V ′(φ)

V(φ)
=
M2

P
2
n2

φ2

η(φ) =M2
P
V ′′(φ)

V(φ)
=M2

P
(n− 1)n
φ2

ε(φe) = 1 gives

φe =
MP√

2
n



32 Monomial Chaotic Inflation
The number of e-folds is

N =
1
M2

P

∫φe
φ∗

dφ
V(φ) ′

V(φ)
=

1
2M2

P

φ2
∗ −φ

2
e

n
,

which yields

φ∗ =
MP√

2

√
n(4N+n)

The slow-roll parameters at the ‘beginning’ of
inflation are

ε(φ) =
n

4N+n

η(φ) =
2(n− 1)
4N+n



33 Monomial Chaotic Inflation

The tensor-to-scalar ratio and spectral tilt are

r = 16ε(φ∗) =
16n

4N+n

ns = 1 − 6ε(φ∗) + 2η(φ∗) = 1 −
2(2 +n)

4N+n)

For n = 2, N = 50, we have r = 0.158, ns = 0.9604

For n = 4, N = 50, we have r = 0.314, ns = 0.9412



34 Monomial Chaotic Inflation
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Colley, Gott 1409.4491; Cheng, Huang & Wang, 1409.7025



35 Monomial Chaotic Inflation

For
V = αφn,

normalisation of the spectrum

As ≈
V(φ∗)

24π2M4
Pε(φ∗)

≈ 2
n
2 N(MP

√
Nn)n

6π2M4
Pn

α = 2.45× 10−9

gives

for n = 2, the inflaton mass ism = 1.81× 1013 GeV

for n = 4, the inflaton self-coupling is
λ = 6.83× 10−14



36 Other Possibilities

Natural inflation, . . .

Non-minimal coupling to gravity

Modified gravity (f(R) theories)

Non-canonical kinetic term

Multi-field inflation



37 Lyth Bound

Lyth bound
∆φ

MP
≈
√

r

0.01

∆φ > MP for r > 0.01

For n = 2, φ∗ ≈ 14MP

For n = 4, φ∗ ≈ 20MP

Problems with quantum gravity?



38 Conclusions

Inflation solves the problems of Big Bang Cosmology

Many possible models

Controversy between Planck and BICEP2


