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3 Cosmology

A homogenous and isotropic universe is described by the
Friedmann-Lemaitre-Robertson-Walker (FRW) metric

ds? = —dt? + a?(t) +12(d6? + sin® 0d?)

T
1—kr2?

Matter is a perfect fluid:

T\L/L = dlag(p: —P,—P, _p)



4 Cosmology

Friedmann equations

N\ 2
a 1 k
W= (9) =t , %
(a) a2’ @
i 1 1
& (043p) = ———p(1+3w),
a 61\/11%(‘)4r P) 6M1%p( +3w)

where the reduced Planck mass

1
M3 = e =24 x 10" GeV

Continuity equation

p=—-3H(p+p) =—-3Hp(1+w)



Critical Density

From the Friedmann equation,

1
k = a? ——H2> ,
(31\/[1%

p = pe =3MpH?

thus k =0 if

or QO =1, where the density parameter

P 1 p
Q=—=_—"—-— 1
Pc 3M12,H2 ()



6 Problems of Big Bang Cosmology

= Why is the Universe homogenous?
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Problems of Big Bang Cosmology

= Why is the Universe homogenous?

= Why is the Universe flat?

dQ
dlna

— (1+3w)Q(Q—1)

m () =1is an unstable fixed point for 1 43w > 0
® |Q—1| <O(107%) at Planck time



8 Problems of Big Bang Cosmology

Actual Mass Density
Critical Mass Density
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Problems of Big Bang Cosmology

= Why is the Universe homogenous?

= Why is the Universe flat?

dQ
dlna

= (1+3w)Q(Q—1)

® O =11is an unstable fixed point for 1 4+ 3w > 0
B |Q—1] <0O(107%) at Planck time

md= —L(p + 3p) < 0 for ordinary matter
6Mp



Problems of Big Bang Cosmology

= Why is the Universe homogenous?

= Why is the Universe flat?

dQ
dlna

= (1+3w)Q(Q—1)

® O =11is an unstable fixed point for 1 4+ 3w > 0
B |Q—1] <0O(107%) at Planck time

md= —L(p + 3p) < 0 for ordinary matter
6Mp

m Unlikely initial conditions



10 Vacuum Energy & Inflation

m Forpy = —pporw=—1,onehas p =0

® The scale factor grows as



11 Problems of Big Bang Cosmology
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12 Problems of Big Bang Cosmology
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13 Problems of Big Bang Cosmology



14 Inflaton Density as Vacuum Energy

Action for gravity and scalar field ¢

S = Jd‘*x\/_ ( —ER+ ;g‘waudﬁwb —V(dJ))

Energy density & pressure

p= 2+ V(®)
= —c|>2 V(d)

ie)



15 Inflaton Density as Vacuum Energy

Equation of motion:
$ +3HP- Vb +V(d)' =0

Friedmann equation

1

| S e —
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3M3
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16  Slow-Roll Conditions

Equation of motion:
¢ +3Hd + V() =0

Friedmann equation

1

| 3l —
2
3M32

1.,
<§¢ +V(¢)>

 $2 < V(o)
m || < [BHPL, V()|



17 Slow-Roll Conditions

The slow-roll parameters are

1 2V (d)
eV (d))

For slow-roll it is necessary to have e < 1andn <« 1



18  Slow-Roll Inflation

Friedmann equations give

3H ~ —V(d)’
szv(d))
3M2
and . ,
d
g H2(1 —
= P TI = H -
where
3 1§21 ,VI(9)
e:z(w—i—l) 2M2H2 2M Vo)




19  Slow-Roll Inflation

V(9)

A

5/¢/./

Daniel Baumann

1
(bend

Ad

dCMB

y



20  Number of e-Folds

The number of e-folds is given by

ty Ty H 1 cb* V(q))/
N, = dtH = do— ~ — d
J, =] aog M2 Jo. %)

® Minimal required number of e-foldsis N =50..

.60



21 Minimal Required Number of e-Folds
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23 Quantum Fluctuations
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Quantum Fluctuations

m Classical field and fluctuation: & — ¢ + @
® @ is approximately free quantum field
m For Fourier components of ¢,
kZ
$x +3HPK + 9k =0,
a
where l—j ~ A1
m For ¢ < H~1, the field behaves as Klein-Gordon

m For £ > H™1, there is overdamping and the
fluctuation ‘freezes’



25  Quantum Fluctuations

Comoving Scales
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26 Power Spectra

The power spectra of scalar and tensor perturbations are
parametrised by

1\ eI dink In g
Pr(k) = As <_>

i

1d k
k )nt_1+2dlnk In FJ’_




26 Power Spectra

The power spectra of scalar and tensor perturbations are
parametrised by

K ns—l—i-%%ln k—k*—b—
?R(k) = As <F>

Kk nt—l—l—%%ln k—k*—i-
Pi(k) = Ay (g)

In the slow-roll approximation

16H2
:Pt(k) = <7'[M2>
P/ x=aH




27  Power Spectra
The power spectra of scalar and tensor (gravity wave)

perturbations are parametrised by

k ns—1+%%ln%+...
7ali) = A (1

K ne—1+3 S n kg
Po(k) = Aq (k—)

In the slow-roll approximation
N 1%

T 24mMie
ng ~1—6e+2n

_ Px(k)
Pi(k)

S

~ 16e = —8n;
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27  Power Spectra
The power spectra of scalar and tensor (gravity wave)

perturbations are parametrised by

e\ eI gk In g
7ali) = A (5

K ne—1+3 S n kg
= A (i)

In the slow-roll approximation

~ Y

T 24m2Mie
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28  Recipe for Slow-Roll Inflation

m Calculate the field value at the end of inflation:

MZ / 2
(0 =7 (\\//((die))) -

m Calculate ¢, from the required number of e-folds N:

N

B 1 J(b* de
Mp Jp. /2¢(o)



29  Recipe for Slow-Roll Inflation

m Calculate r and n; for e-folds N = [50, 60]:

T =16€e(d,)
ng =1—6€(ds) +2n(d.),

® From the amplitude of scalar perturbations

2o 1 Ve

- ~ 245 x 1077
* T M 24 (4.) :

fix the normalisation of V:

~ 16 4 T
V(d.) =~ (1.94 x 10°° GeV) 01



30  Recipe for Slow-Roll Inflation

Tensor-to-scalar ratio (ro.002)
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Planck: ng = 0.9603 £ 0.0073, r < 0.12




31  Monomial Chaotic Inflation
= Monomial potential
V= adp"
® The slow-roll parameters are

/ 2 .2

2 TV(p) T 2 2
N zvﬂ(d)) . »(n—1)n
n(d))_MP (cb) _MP Cbz

B e(de) =1gives

Cbezﬁn



32  Monomial Chaotic Inflation
m The number of e-folds is

be / 2 a2
N PP

N=_— = ,
M2y, V(d) 2M3 n

which yields

_Mp
b, = 7 n(4N +n)

m The slow-roll parameters at the ‘beginning” of
inflation are




33  Monomial Chaotic Inflation

The tensor-to-scalar ratio and spectral tilt are

16
r=16e(¢.) = :n
2(2
ng =1—6e(ds) +2n(ds) =1— 4](\]—::__:3

m Forn =2, N =50, we have r = 0.158, ny = 0.9604
m Forn =4, N =50, we have r = 0.314, ng = 0.9412



Monomial Chaotic Inflation
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Colley, Gott 1409.4491; Cheng, Huang & Wang, 1409.7025



35  Monomial Chaotic Inflation

For
V=u«ad",

normalisation of the spectrum

V(b))  23N(MpvNn)"

~ ~ x=245x10""
242 M3 e(d.) 6reMpn

S

gives
m for n = 2, the inflaton mass is m = 1.81 x 1013 GeV

m for n =4, the inflaton self-coupling is
A=6.83x10"1



36  Other Possibilities

m Natural inflation, ...

= Non-minimal coupling to gravity
m Modified gravity (f(R) theories)
m Non-canonical kinetic term

m Multi-field inflation



37  Lyth Bound

Lyth bound
A )T

Mp — V 0.01

m Ad > Mp forr > 0.01
m Forn =2, ¢, =~ 14Mp
m Forn =4, ¢, =~ 20Mp

m Problems with quantum gravity?



38 Conclusions

m Inflation solves the problems of Big Bang Cosmology
®m Many possible models
= Controversy between Planck and BICEP2



