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Introduction

Accelerating cosmology within modified gravity: advances?

1 No need to introduce extra fields (inflaton, dark scalar or dark fluid, etc) to describe accelerating universe. The problem is solved
by modification of gravitational action at early/late times!

2 Well-known applications to describe inflation in terms of higher-derivative gravity: Starobinsky, Mamaev-Mostepanenko, 1980.

3 Very natural possibility to describe dark energy era via modified gravity. The first discovery of quintessence dark era produced by
power-law F(R) gravity is given by Capozziello (2002).

4 Very natural unification of inflation and dark energy eras in modified gravity: Nojiri-Odintsov 2003.

5 The complete description of the whole universe evolution eras sequence: inflation, radiation/matter dominance, dark energy in
modified F(R) gravity, Nojiri-Odintsov 2006.

6 The possible emergence of dark matter from F(R) gravity (Capozziello 2004).

7 Direct relation of modified gravity theories with string theory. example of F(R) gravity (Nojiri-Odintsov 2003)

8 Relation with high energy physics (effective action, conformal anomaly, unification of GUTs with HD gravity)

9 Cosmological bounds and local tests.
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e-Print: arXiv:1011.0544 [gr-qc]

Extended Theories of Gravity, Salvatore Capozziello, Mariafelicia De Laurentis (Naples U. and INFN, Naples). Aug 2011. 184 pp. Published

in Phys.Rept. 509 (2011) 167-321, e-Print: arXiv:1108.6266
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F (R) gravity:General properties

The action of ghost-free F (R) gravity

SF (R) =

∫
d4x
√
−g
(

F (R)

2κ2
+ Lmatter

)
. (1)

The FRW equations in the Einstein gravity coupled with perfect fluid are given by

ρmatter =
3

κ2
H2
, pmatter = −

1

κ2

(
3H2 + 2Ḣ

)
, (2)

which allow us to define an effective equation of state (EoS) parameter as follows:

weff = −1−
2Ḣ

3H2
. (3)

The field equation in the F (R) gravity with matter is given by

1

2
gµνF (R)− RµνF

′(R)− gµν�F ′(R) +∇µ∇νF ′(R) = −
κ2

2
Tmatterµν . (4)

By assuming a spatially flat FRW universe,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dx i
)2

, (5)

the equations corresponding to the FRW equations are given as follows:

0 =−
F (R)

2
+ 3
(
H2 + Ḣ

)
F ′(R)− 18

(
4H2Ḣ + HḦ

)
F ′′(R) + κ

2
ρmatter , (6)

0 =
F (R)

2
−
(
Ḣ + 3H2

)
F ′(R) + 6

(
8H2Ḣ + 4Ḣ2 + 6HḦ +

...
H
)
F ′′(R)

+ 36
(

4HḢ + Ḧ
)2

F ′′′(R) + κ
2pmatter . (7)
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F (R) gravity: General properties

One can find several (often exact) solutions of (6). When we neglect the contribution from matter,
by assuming that the Ricci tensor is covariantly constant, that is, Rµν ∝ gµν , Eq. (4) reduces to
an algebraic equation:

0 = 2F (R)− RF ′(R) . (8)

If Eq. (8) has a solution, the (anti-)de Sitter, the Schwarzschild-(anti-)de Sitter space, and/or the
Kerr-(anti-)de Sitter space is an exact vacuum solution.
Now we assume that F (R) behaves as F (R) ∝ f0R

m. Then Eq. (6) gives

0 =f0

{
−

1

2

(
6Ḣ + 12H2

)m
+ 3m

(
Ḣ + H2

)(
6Ḣ + 12H2

)m−1

−3mH
d

dt

{(
6Ḣ + 12H2

)m−1
}}

+ κ
2
ρ0a
−3(1+w)

. (9)

Eq. (7) is irrelevant because it can be derived from (9). When the contribution from the matter can
be neglected (ρ0 = 0), the following solution exists:

H ∼
− (m−1)(2m−1)

m−2

t
, (10)

which corresponds to the following EoS parameter (3):

weff = −
6m2 − 7m − 1

3(m − 1)(2m − 1)
. (11)
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F (R) gravity: General properties

On the other hand, when the matter with a constant EoS parameter w is included, an exact solution
of (9) is given by

a = a0t
h0 , h0 ≡

2m

3(1 + w)
,

a0 ≡
[
−

3f0h0

κ2ρ0

(
−6h0 + 12h2

0

)m−1
{(1− 2m) (1− m)− (2− m)h0}

]− 1
3(1+w)

, (12)

and we find the effective EoS parameter (3) as

weff = −1 +
w + 1

m
. (13)

These solutions (10) and (12) show that modified gravity may describe early/late-time universe

acceleration.
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F (R) gravity: Scalar-tensor description

One can rewrite F (R) gravity as the scalar-tensor theory. By introducing the auxiliary field A, the
action (1) of the F (R) gravity is rewritten in the following form:

S =
1

2κ2

∫
d4x
√
−g
{
F ′(A) (R − A) + F (A)

}
. (14)

By the variation of A, one obtains A = R. Substituting A = R into the action (14), one can repro-
duce the action in (1). Furthermore, by rescaling the metric as gµν → eσgµν

(
σ = − ln F ′(A)

)
,

we obtain the Einstein frame action:

SE =
1

2κ2

∫
d4x
√
−g
(
R −

3

2
gρσ∂ρσ∂σσ − V (σ)

)
,

V (σ) =e
σg
(
e
−σ
)
− e

2σf
(
g
(
e
−σ
))

=
A

F ′(A)
−

F (A)

F ′(A)2
. (15)

Here g
(
e−σ

)
is given by solving the equation σ = − ln

(
1 + f ′(A)

)
= − ln F ′(A) as A = g

(
e−σ

)
.

Due to the conformal transformation, a coupling of the scalar field σ with usual matter arises. Since
the mass of σ is given by

m2
σ ≡

3

2

d2V (σ)

dσ2
=

3

2

{
A

F ′(A)
−

4F (A)

(F ′(A))2
+

1

F ′′(A)

}
, (16)

unless mσ is very large, the large correction to the Newton law appears.
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F (R) gravity: Viable modified gravities

As an example, we may consider the following exponential model

F (R) = R + α
(
e
−bR − 1

)
. (17)

Here α and b are constants. One can regard α as an effective cosmological constant and we choose
the parameter b so that 1/b is much smaller than the curvature R0 of the present universe. Then
in the region R � R0, we find

m2
σ ∼

ebR

2αb2
, (18)

which is positive and m2
σ could be very large and the correction to the Newton law is very small. In

paper by Hu-Sawicky 2007, the one of the first examples of “realistic” F (R) model was proposed.
Currently, several viable models are proposed.
In order to obtain a realistic and viable model, F (R) gravity should satisfy the following conditions:

1 When R → 0, the Einstein gravity is recovered, that is,

F (R)→ R that is,
F (R)

R2
→

1

R
. (19)

This also means that there is a flat space solution.

2 There appears a stable de Sitter solution, which corresponds to the late-time acceleration

and, therefore, the curvature is small R ∼ RL ∼
(

10−33 eV
)2

. This requires, when R ∼ RL,

F (R)

R2
= f0L − f1L (R − RL)2n+2 + o

(
(R − RL)2n+2

)
. (20)

Here, f0L and f1L are positive constants and n is a positive integer. Of course, in some cases
this condition may not be strictly necessary.
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F (R) gravity: Viable modified gravities

3 There appears a quasi-stable de Sitter solution that corresponds to the inflation of the early

universe and, therefore, the curvature is large R ∼ RI ∼
(

1016∼19 GeV
)2

. The de Sitter
space should not be exactly stable so that the curvature decreases very slowly. It requires

F (R)

R2
= f0I − f1I (R − RI )

2m+1 + o
(

(R − RI )
2m+1

)
. (21)

Here, f0I and f1I are positive constants and m is a positive integer.

4 In order to avoid the curvature singularity when R →∞, F (R) should behaves as

F (R)→ f∞R2 that is
F (R)

R2
→ f∞ . (22)

Here, f∞ is a positive and sufficiently small constant. Instead of (22), we may take

F (R)→ f∞̃R2−ε that is
F (R)

R2
→

f∞̃

Rε
. (23)

Here, f∞̃ is a positive constant and 0 < ε < 1. The above condition (22) or (23) prevents
both the future singularity and the singularity due to large density of matter.

5 To avoid the anti-gravity, we require

F ′(R) > 0 , (24)

which is rewritten as
d

dR

(
ln

(
F (R)

R2

))
−

2

R
. (25)
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F (R) gravity: Viable modified gravities

6 Combining conditions (19) and (24), one finds

F (R) > 0 . (26)

7 To avoid the matter instability (Dolgov-Kawasaki 2003), we require

U(Rb) ≡
Rb

3
−

F (1)(Rb)F (3)(Rb)Rb

3F (2)(Rb)2
−

F (1)(Rb)

3F (2)(Rb)

+
2F (Rb)F (3)(Rb)

3F (2)(Rb)2
−

F (3)(Rb)Rb

3F (2)(Rb)2
< 0 . (27)

The conditions 1 and 2 tell that an extra, unstable de Sitter solution must appear at R = Re

(0 < Re < RL). Since the universe evolution will stop at R = RL because the de Sitter solution
R = RL is stable; the curvature never becomes smaller than RL and, therefore, the extra de Sitter
solution is not realized.
An example of viable F (R) gravity is given below

F (R)

R2
=
{

(Xm (RI ; R)− Xm (RI ; R1)) (Xm (RI ; R)− Xm (RI ; RL))2n+2

+Xm (RI ; R1) Xm (RI ; RL)2n+2 + f 2n+3
∞

} 1
2n+3 ,

Xm (RI ; R) ≡
(2m + 1) R2m

I

(R − RI )
2m+1 + R2m+1

I

. (28)

Here, n and m are integers greater or equal to unity, and n,m ≥ 1 and R1 is a parameter related
with Re by

X (RI ; Re) =
(2n + 2) X (RI ; R1) X (RI ; R1) + X (RI ; RL)

2n + 3
. (29)

We also assume 0 < R1 < RL � RI .
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F (R) gravity: Viable modified gravities

Another realistic theory unifying inflation with dark energy is given in

F (R) = R − 2Λ

(
1− e

− R
R0

)
− Λi

(
1− e

−
(

R
Ri

)n)
+ γRα . (30)

Here Λ is the effective cosmological constant in the present universe and we also assume the pa-

rameter R0 is almost equal to Λ. Ri and Λi are typical values of the curvature and the effective

cosmological constant. α is a constant: 1 < α ≤ 2. Generalizations: coupling of curvature with

trace of EMT (Harko-Lobo- -Nojiri-Odintsov) or with EMT (Saez-Gomez).
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Mimetic F(R) gravity

This theory makes natural unification of inflation, late-time acceleration and dark matter
via unique gravitational theory. Proposal of mimetic theory:Mukhanov-Chamseddine.
In the mimetic model, we parametrize the metric in the following form.

gµν = −ĝρσ∂ρφ∂σφĝµν . (31)

Instead of considering the variation of the action with respect to gµν , we consider the
variation with respect to ĝµν and φ. Because the parametrization is invariant under the
Weyl transformation ĝµν → eσ(x)ĝµν , the variation over ĝµν gives the traceless part of
the equation. Proposal of mimetic F(R) gravity: Nojiri-Odintsov,arXiv:1408.3561. In
case of F (R) gravity, by using the parametrization of the metric as above,

S =

∫
d4x

√
−g (ĝµν , φ) (F (R (ĝµν , φ)) + Lmatter) . (32)
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Mimetic F(R) gravity

Field equations have the following form:

0 =
1

2
gµνF (R (ĝµν , φ))− R (ĝµν , φ)µν F

′ (R (ĝµν , φ))

+∇
(
g (ĝµν , φ)µν

)
µ
∇
(
g (ĝµν , φ)µν

)
ν
F ′ (R (ĝµν , φ))

− g (ĝµν , φ)µν � (ĝµν , φ)F ′ (R (ĝµν , φ)) +
1

2
Tµν

+ ∂µφ∂νφ
(
2F (R (ĝµν , φ))− R (ĝµν , φ)F ′ (R (ĝµν , φ))

−3�
(
g (ĝµν , φ)µν

)
F ′ (R (ĝµν , φ)) +

1

2
T

)
, (33)

and

0 =∇
(
g (ĝµν , φ)µν

)µ (
∂µφ

(
2F (R (ĝµν , φ))− R (ĝµν , φ)F ′ (R (ĝµν , φ))

−3�
(
g (ĝµν , φ)µν

)
F ′ (R (ĝµν , φ)) +

1

2
T

))
. (34)

We should note that any solution of the standard F (R) gravity is also a solution of the
mimetic F (R) gravity. This is because in the standard F (R) gravity, Eqs. (33)–(34) are
always satisfied since we find 2F (R) − RF ′(R) − 3�F ′(R) + 1

2
T = 0. The mimetic

F (R) gravity is ghost-free and conformally invariant theory.
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Mimetic F(R) gravity

FRW metric:
ds2 = −dt2 + a(t)2

∑
i=1,2,3

dx i
2
, (35)

with R = 6Ḣ + 12H2 and φ is equal to t (due to mimetic form of metric).
Field equations: Eq. (34) gives

Cφ

a3
=2F (R)− RF ′(R)− 3�F ′(R) +

1

2
T

=2F (R)− 6
(
Ḣ + 2H2

)
F ′(R) + 3

d2F ′(R)

dt2
+ 9H

dF ′(R)

dt
+

1

2
(−ρ+ 3p) . (36)

Here Cφ is a constant. Then in the second line of Eq. (33), only (t, t) component does
not vanish and behaves as a−3 and therefore the solution of Eq. (36) with Cφ 6= 0 plays
a role of the mimetic dark matter. On the other hand the (t, t) and (i , j)-components
in (33) give the identical equation:

0 =
d2F ′(R)

dt2
+ 2H

dF ′(R)

dt
−
(
Ḣ + 3H2

)
F ′(R) +

1

2
F (R) +

1

2
p . (37)

By combining (36) and (37), we obtain

0 =
d2F ′(R)

dt2
− H

dF ′(R)

dt
+ 2ḢF ′(R) +

1

2
(p + ρ) +

4Cφ

a3
. (38)
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Mimetic F(R) gravity

When Cφ = 0, the above equations reduce to those in the standard F (R) gravity, or
in other words, when Cφ 6= 0, the equation and therefore the solutions are different
from those in the standard F (R) gravity. Lagrange multiplier constraint presentation:

Extended model. We may consider the following action of mimetic F (R) gravity with
scalar potential:

S =

∫
d4x
√
−g (F (R (gµν))− V (φ) + λ (gµν∂µφ∂νφ+ 1) + Lmatter) . (39)

This action is of the sort of modified gravity with Lagrange multiplier constraint. Work-
ing with viable modified gravity one can reproduce the arbitrary evolution by changing
scalar potential. This gives natural unification of inflation, dark matter and dark energy.
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Singular evolution

The finite-time future singularities are classified as follows: Nojiri-Odintsov-Tsujikawa,
PRD71,2005,063004.

Type I (“Big Rip”) : When t → ts , the scale factor diverges a, the effective
energy density ρeff , the effective pressure peff diverge, a→∞, ρeff →∞, and
|peff | → ∞. This type of singularity was presented in
Caldwell-Kamionkowski-Weinberg,PRL91, 2003 where it was indicated that Rip
occurs before entering singularity itself.

Type II (“sudden”) : When t → ts , the scale factor and the effective energy
density is finite, a→ as , ρeff → ρs but the effective pressure diverges |peff | → ∞.

Type III : When t → ts , the scale factor is finite, a→ as but the effective energy
density and the effective pressure diverge, ρeff →∞, |peff | → ∞.

Type IV : For t → ts , the scale factor, the effective energy density, and the
effective pressure are finite, that is, a→ as , ρeff → ρs , |peff | → ps , but the higher
derivatives of the Hubble rate H ≡ ȧ/a diverge.

There is also possibility of change to decceleration in future, or approaching dS or infinite
singularity (like Little Rip). It is interesting that future singularities may occur not only
dark energy epoch but also at inflationary epoch: Barrow-Graham, PRD2015;Nojiri-
Odintsov-Oikonomou,PRD91 (2015)084059.
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Singular evolution

We consider the following action:

S =

∫
d4x
√
−g
{

1

2κ2
R −

1

2
ω(φ)∂µφ∂

µφ− V (φ) + Lmatter

}
. (40)

Choice of Hubble rate.In the case of the Type II and IV singularities, the Hubble rate
H(t) may be chosen in the following form:

H(t) = f1(t) + f2(t) (ts − t)α . (41)

Here f1(t) and f2(t) are smooth (differentiable) functions of t and α is a constant. If
0 < α < 1, there appears Type II singularity and if α is larger than 1 and not integer,
there appears Type IV singularity. We first consider the simple case that f1(t) = 0 and
f2(t) = f0 with a positive constant f0. In the neighborhood of t = ts , we find that,

ω(φ) =
2αf0

κ2
(ts − φ)α−1 , V (φ) ∼ −

αf0

κ2
(ts − φ)α−1 , (42)

and we find

ϕ = −
2
√

2αf0

κ (α+ 1)
(ts − φ)

α+1
2 , (43)

Consequently, the scalar potential reads,

V (ϕ) ∼ −
αf0

κ2

{
−
κ (α+ 1)

2
√

2αf0
ϕ

} 2(α−1)
α+1

. (44)
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Singular evolution

Therefore, when the following condition holds true,

− 2 <
2 (α− 1)

α+ 1
< 0 , (45)

there occurs the Type II singularity. Accordingly, the Type IV singularity occurs when
the following holds true,

0 <
2 (α− 1)

α+ 1
< 2 . (46)

More examples maybe presented. Qualitatively: There could be three cases,

1 The Type IV singularity occurs during the inflationary era.

2 The inflationary era ends with the Type IV singularity.

3 The Type IV singularity occurs after the inflationary era.

Most realistically, we have second and third case, when we may get realistic inflation
while universe survive transition over Type IV singularity. This scenario is also extended
to F(R) gravity.Furthermore, one can get unification of singular inflation with dark
energy via the same modified gravity. Singular inflation with exit thanks to singularity.
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Unifying trace-anomaly driven inflation with cosmic acceleration in modified
gravity. Bamba, Myrzakulov, Odintsov, Sebastiani, arXiv:1403.6649.

Trace anomaly reads (Duff 1994,Buchbinder-Odintsov-Shapiro 1992))

〈Tµµ 〉 = α

(
W +

2

3
�R

)
− βG + ξ�R , (47)

where W = CξσµνCξσµν is the “square” of the Weyl tensor Cξσµν and G the Gauss-Bonnet
topological invariant, given by

W = RξσµνRξσµν − 2RµνRµν +
1

3
R2
, G = RξσµνRξσµν − 4RµνRµν + R2

, (48)

The dimensionfull coefficients α, β, and ξ of the above expression are related to the number of
conformal fields present in the theory. We introduce real scalar fields NS, the Dirac (fermion) fields
NF, vector fields NV, gravitons N2(= 0 , 1), and higher-derivative conformal scalars NHD. Then

α =
NS + 6NF + 12NV + 611N2 − 8NHD

120(4π)2
, β =

NS + 11NF + 62NV + 1411N2 − 28NHD

360(4π)2
,

(49)
If we exclude the contribution of gravitons and higher-derivative conformal scalars, we get

α =
1

120(4π)2
(NS + 6NF + 12NV) , β =

1

360(4π)2
(NS + 11NF + 62NV) , ξ = −

NV

6(4π)2
,

(50)

For Nsuper = 4 SU(N) super Yang-Mills (SYM) theory, we have NS = 6N2, NF = 2N2, and

NV = N2, where N is a very large number. Therefore, we obtain a relation among the numbers of
scalars, spinors and vector fields.

α = β =
N2

64π2
, ξ = −

N2

96π2
. (51)
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Unifying trace-anomaly driven inflation with cosmic acceleration in modified
gravity

Note that
2

3
α + ξ = 0 , (52)

and in principle the contribution of the �R term to the conformal anomaly vanishes, but it could
be reintroduced via a higher curvature term in the action (see below). Owing to the conformal
anomaly, the classical Einstein equation is corrected as

Rµν −
1

2
gµν R = κ

2〈Tµν〉 . (53)

By taking the trace of the last equation (53), we derive

R = −κ2〈Tµµ 〉 ≡ −κ
2
[
α

(
W +

2

3
�R

)
− βG + ξ�R

]
. (54)

Despite the fact that in Eq. (52), the coefficient of the �R term is equal to zero, we can set it

to any desired value by adding the finite R2 counter term in the action. In the classical Einstein
gravity, this additional term is necessary to exit from inflation (Starobinsky 1980). Concretely, by
adding the following action

I =
γN2

192π2

∫
M

d4x
√
−g R2

, γ > 0 , (55)

Eq. (53) becomes (Dowker-Critchley 1976,Fishetti-Hartle-Hu 1979,Mamaev-Mostepanenko 1980,
Starobinsky 1980)

Rµν−
1

2
gµν R = −

γN2κ2

48π2
RRµν+

γN2κ2

192π2
R2gµν+

γN2κ2

48π2
∇µ∇νR−

γN2κ2

48π2
gµν�R2+κ2〈Tµν〉 .

(56)
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Account of F(R) gravity

The action is given by

I =
1

2κ2

∫
M

d4x
√
−g

[
R + 2κ2

γ̃R2 + f (R) + 2κ2LQC

]
, γ̃ ≡

γN2

192π2
, (57)

where we have considered the R2 term in the action with γ̃ as in (55) and we have added a correction
given by a function f (R) of the Ricci scalar. The field equations are

Gµν ≡ Rµν −
1

2
gµνR = κ

2〈Tµν〉 − 4γ̃κ2RRµν + γ̃R2
κ

2gµν + 4γ̃κ2∇µ∇νR − 4γ̃κ2gµν�R2

−fR (R)

(
Rµν −

1

2
Rgµν

)
+

1

2
gµν [f (R)− RfR (R)] + (∇µ∇ν − gµν�)fR (R) , (58)

The trace is described as

R = −κ2 (αW − βG + δ�R)− 2f (R) + RfR (R) + 3�fR (R) , (59)

where we have imposed the condition in Eq. (52) and introduced δ defined as

δ ≡ −12γ̃ = −
γN2

16π2
, δ < 0 . (60)

Here, γ(> 0) is a free parameter. The flat FLRW space-time

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (61)

The energy density ρ and pressure p of quantum corrections are represented as

〈T00〉 = ρ , 〈Tij〉 = p a(t)2
δij , (i, j = 1, 2, 3) . (62)
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Account of F(R) gravity

In the FLRW background, it follows from (µ, ν) = (0, 0) component and the trace part of (µ, ν) =
(i, j) of Eq. (58), we obtain the equations of motion

3

κ2
H2 = ρ +

1

2κ2

[
RfR (R)− f (R)− 6H2fR (R)− 6HḟR (R)

]
≡ ρeff , (63)

−
1

κ2

(
2Ḣ + 3H2

)
= p +

1

2κ2

[
−RfR (R) + f (R) + (4Ḣ + 6H2)fR (R) + 4HḟR (R) + 2f̈R (R)

]
≡ peff . (64)

In these equations, ρeff and peff are the effective energy density and pressure of the universe. The
effective conservation law

ρ̇eff + 3H (ρeff + peff) = 0 . (65)

The effective energy density is

ρeff =
ρ0

a4
+6βH4+δ

(
18H2Ḣ + 6ḦH − 3Ḣ2

)
+

1

2κ2

(
RfR (R)− f (R)− 6H2fR (R)− 6HḟR (R)

)
,

(66)
where ρ0 is the constant of integration. The effective pressure is

peff =
ρ0

3a4
− β

(
6H4 + 8H2Ḣ

)
− δ

(
9Ḣ2 + 12HḦ + 2

...
H + 18H2Ḣ

)
+

1

2κ2

[
−RfR (R) + f (R) + (4Ḣ + 6H2)fR (R) + 4HḟR (R) + 2f̈R (R)

]
. (67)

In the expressions of ρeff in Eq. (66) and peff in Eq. (67), we can recognize the contributions from

not only modified gravity but also quantum corrections. .
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Trace-anomaly driven inflation in exponential gravity

Exponential f (R) (Cognola-Elizalde-Nojiri-Odintsov-Zerbini 2007)

f (R) = −2Λeff

[
1− exp

(
−

R

R0

)]
. (68)

Indistinguishable from LCDM.
de Sitter solutions:

H2
dS± =

1

4βκ2

(
1±

√
1−

8ζ

3

)
=

2πM2
Pl

N2

(
1±

√
1−

8ζ

3

)
,

Λeff =
ζ

βκ2
= ζ

[
8πM2

Pl

N2

]
, 0 < ζ <

3

8
. (69)

There are two special solutions

H2
dS =

1

2βκ2
=

4πM2
Pl

N2
, Λeff = 0 , (70)

H2
dS =

1

4βκ2
=

2πM2
Pl

N2
, Λeff =

3

8βκ2
=

3

8

(
8πM2

Pl

N2

)
. (71)

Stability of the de Sitter solutions We define the perturbations ∆H(t) as

H = HdS± + ∆H(t) , |∆H(t)| � 1 . (72)

The solution is given by

∆H(t) = A0eλ1,2t , λ1,2 =

−3HdS± ±
√

9H2
dS± + 4

δ

(
1
κ2 − 4H2

dS±β
)

2
, (73)

where A0 is a constant.
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Trace-anomaly driven inflation in exponential gravity

The de Sitter solutions of the model (68) are unstable (and adopted to describe the inflation) only
if λ1 (the eigenvalue with the positive sign in front of the square root) is real and positive, i.e.,

4β −
1

κ2H2
dS±

> 0 , 9H2
dS± +

4

δ

(
1

κ2
− 4H2

dS±β

)
> 0 . (74)

Here, we have taken into account the fact that β > 0 and δ < 0.
Dynamics of inflation
Given the unstable de Sitter solution H2

dS± in , to analyze inflation occurring in the model in Eq. (68),

we have to calculate the amplitude of the perturbations in Eq. (73).
At the time t = 0 when inflation starts, we have to set ∆H(t = 0) = 0. The complete solution of
this equation is given by the homogeneous part in Eq. (73) plus the contribute of modified gravity
as follows

∆H(t) = A0eλ1,2t −
e−RdS/R0 Λeff

12HdSκ2

(
RdS

R0
+ 2

)(
1

κ2
− 4H2

dSβ

)−1

. (75)

Thus, at t = 0, by putting ∆H(t = 0) = 0, we can estimate the amplitude A0 as

A0 = −
e−RdS/R0ζ

12HdS(βκ2)

(
RdS

R0
+ 2

)(
1−

8

3
ζ

)−1/2

< 0 . (76)

Here, we have considered only the unstable solution HdS ≡ HdS+ in Eq. (69).
The time at the end of inflation

tf '
RdS

R0 λ1
. (77)

The number of e-folds N is

N = ln

(
af

ai

)
, (78)

and inflation is viable if N > 76.
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Trace-anomaly driven inflation in exponential gravity

For the model (68), by taking account of the fact that we have chosen ti = 0 and using Eq. (77),
we acquire

N ≡ HdStf =
2RdS

3R0

−1 +

√√√√√√1−
16β

9δ


√

1− 8
3 ζ

1 +
√

1− 8
3 ζ



−1

. (79)

By combining this relation, the expressions for β in Eq. (51) and δ in Eq. (60), and Eq. (79), we
have

N =
2b

3

−1 +

√√√√√√1 +
4

9γ


√

1− 8
3 ζ

1 +
√

1− 8
3 ζ



−1

. (80)

Spectral index
The second time derivative of a(t) is

ä

a
= H2 + Ḣ = H2 (1− ε) , (81)

with the parameter ε. When the approximate de Sitter solution is realized, it has to be very small
as

ε = −
Ḣ

H2
� 1 . (82)

Moreover, ε has to change very slowly. There is another parameter η, which has to also be very
small as

|η| =

∣∣∣∣∣− Ḧ

2HḢ

∣∣∣∣∣ ≡
∣∣∣∣ε− 1

2εH
ε̇

∣∣∣∣� 1 . (83)

These two parameters are the so-called slow-roll parameters.
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Trace-anomaly driven inflation in exponential gravity

The amplitude of scalar-mode power spectrum of the primordial curvature perturbations at k =
0.002 Mpc−1 is described as

∆2
R =

κ2H2

8π2ε
, (84)

and the last cosmological data constrain the spectral index ns and the tensor-to-scalar ratio r are
given by (Mukhanov:1981),

ns = 1− 6ε + 2η , r = 16ε . (85)

In the model (68), we find

∆2
R =

1

32π2βε

(
1 +

√
1−

8

3
ζ

)
=

2

N2ε

(
1 +

√
1−

8

3
ζ

)
, (86)

The parameters ε and η read

ε ' −
∆Ḣ(t)

H2
dS

=
b2

N 2

(
−
δ

4β

)
e(λ1t−b)ζ (b + 2)(

1− 8
3 ζ
) (

b

3N
+ 1

)
=

b2

N 2

e(λ1t−b)ζ (b + 2)(
1− 8

3 ζ
) (

b

3N
+ 1

)
,

η = ε−
ε̇

2εHdS

= ε−
λ1

2HdS

= ε−
b

2N
. (87)

During inflation, when t � tf , since N � 1, we have

ε '
b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) � 1 , |η| '

∣∣∣∣− b

2N

∣∣∣∣� 1 . (88)

Thus, the spectral index and the tensor-to-scalar ratio in Eq. (85) for the model (68) are derived as

ns = 1−
b

N
−

6b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) , r =

16b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) . (89)
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Trace-anomaly driven inflation in exponential gravity

We mention the recent observations of the spectral index ns as well as the tensor-to-scalar ratio
r . The results observed by the Planck satellite are ns = 0.9603 ± 0.0073 (68% CL) and r <
0.11 (95% CL). Since b/N � 1 and 1 � b, the constraints from the Planck satellite described
above can be satisfied. For instance, for b = 3, ζ = 1/8, and N = 76, we have ns ' 0.9601 and

r = 1.20× 10−3.
On the other hand, the BICEP2 experiment has detected the B-mode polarization of the cosmic
microwave background (CMB) radiation with the tensor to scalar ratio r = 0.20+0.07

−0.05 (68% CL),
and also the case that r vanishes has been rejected at 7.0σ level.
For our model, even if the dependence of the tensor-to-scalar ratio on N 2 makes it very small, we
can play with a value of ζ close to 3/8 in order to increase its value. For instance, with the choice
ζ = 0.37125, we can still describe the unstable de Sitter solution for b > 1, since RdS � R0 and
f (RdS) ' −2Λeff. Thus, the number of e-folds N depends on γ only as in Eq. (80). Indeed, when
we take the combination of the values of b and γ, e.g., (b = 2, γ > 1.14), (b = 3, γ > 0.76), and
(b = 4, γ > 0.57), and so on, we obtain N > 76.
For example, if N = 76, for b = 2, 3 and 4, we acquire r = 0.22, 0.23, and 0.18, respectively.

Thus, unification of realistic inflation with viable dark energy era occurs in exponential F(R) gravity

with account of quantum effects (trace anomaly). This is in full accord with first discovery of such

unification proposed in Nojiri-Odintsov2003.
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Anti-evaporation of SdS BHs in F(R) theory
L.Sebastiani, D. Momeni, R.Myrzakulov, S.D.Odintsov, arXiv:1305.4231

Nariai metric in the cosmological patch with R0 = 4Λ and cosmological time t given by
τ = arccos [cosh t]−1 reads

ds2 = −
1

Λ cos2 τ

(
−dτ2 + dx2

)
+

1

Λ
dΩ2 , (90)

−π/2 < τ < π/2. F (R)-gravity admits such a metric as the limiting case of the
Schwarzshild-de Sitter solution under the condition

2F (R0) = R0FR(R0) . (91)

Perturbations around the Nariai space-time are described by

ds2 = e2ρ(x,τ)
(
−dτ2 + dx2

)
+e−2ϕ(x,τ)dΩ2 , ρ = − ln

[√
Λ cos τ

]
+δρ , ϕ = ln

√
Λ+δϕ .

(92)
From the field equations of F (R)-gravity one finds

1

α cos2 τ
[2(2α− 1)δϕ]− 3δϕ̈+ 3δϕ′′ = 0 , α =

2ΛFRR(R0)

F ′(R0)
, (93)

and

δR ≡ 4Λ (−δρ+ δϕ) + Λ cos2 τ
(
2δρ̈− 2δρ′′ − 4δϕ̈+ 4δϕ′′

)
= 2

FR(R0)

FRR(R0)
δϕ . (94)

Equation (93) can be used to study the evolution of ϕ(τ, x). In principle, one may insert
the result in (94) in order to obtain ρ(τ, x). However, the radius of the Nariai black
hole depends on ϕ(τ, x) only, so that we will limit our analysis to Eq. (93).
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Anti-evaporation of SdS BHs in F(R) theory

Horizon perturbations.
The position of the horizon moves on the one-sphere S1 and it is located in the corre-
spondence of ∇δϕ ·∇δϕ = 0. For a black hole located at x = x0, the horizon is defined
as

r0(τ)−2 = e2ϕ(τ,x0) =
1 + δϕ(x0, τ)

Λ
. (95)

Therefore, evaporation/anti-evaporation correspond to increasing/decreasing values of
δϕ(τ) on the horizon.
Following [J. C. Niemeyer and R. Bousso, Phys. Rev. D 62 (2000) 023503 [gr-
qc/0004004]] we can decompose the two-sphere radius of Nariai solution into Fourier
modes on the S1 sphere, namely

δϕ(x , t) = ε

+∞∑
n=1

(An(τ) cos[nx] + Bn(τ) sin[nx]) , 1� ε > 0 . (96)

Here, ε is assumed to be positive and small. From Eq. (93) we get

δϕ(x , t) = ε
∞∑
n=1

Pµν (ξ)
[
an cos(nx) + bn sin(nx)

]
, ξ = sin τ , (97)

with

µ =

√
2(2α− 1)

3α
, ν = −

1

2
±
√

n2 +
1

4
, α =

2ΛFRR(R0)

F ′(R0)
. (98)

Above, Pµν (ξ) are the Legendre polynomials regular on the boundary ξ = 0 (i.e. t = 0)
and the unknown coefficients {an, bn} can in principle be obtained by using the initial
boundary conditions at ξ = 0.
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Anti-evaporation of SdS BHs in F(R) theory

By using this formalism, we can study the stability/unstability of Nariai solutions in
F (R)-gravity for different modes of δϕ(x , t). For n = 1 one has near to ξ = 1 (i.e.
t → +∞):

When µ is real

Pµν (ξ) ' (1−ξ)−
µ
2

[
2µ/2

Γ(1− µ)
−

2µ/2(µ− µ2 + 2ν(1 + ν))

4Γ(2− µ)
(1− ξ) +O(1− ξ)2

]
.

(99)
This is the case of α real and 1/2 < α or α < 0, for example models like
F (R) = R + γRm. The Legendre polynomial and therefore the Nariai horizon
diverge. We have anti-evaporation (or evaporation if ε < 0 from the beginning).

When µ is complex number

P
i|µ|
ν (ξ) ' (1−ξ)−

i|µ|
2

 2
i|µ|

2

Γ(1− i |µ|)
−

2
i|µ|

2 (1− ξ)

4Γ(2− i |µ|)
(|µ|(i + |µ|) + 2ν(ν + 1)) +O(1− ξ)2)

 .
(100)

This is the case of 0 < α < 1/2, for example models like

F (R) = R − 2Λ(1− eR/R
∗

). The Legendre polynomial and therefore the Nariai
horizon do not diverge. Solution is stable, we can have only transient
evaporation/antievaporation.



Intro F (R) gravity Trace-anomaly and inflation Neutron stars in f (R) f (G) gravity String-inspired model F (R) bigravity What’s the next?

Stable neutron stars from f (R) gravity
A.Astashenok,S. Capozziello and S.D. Odintsov,arXiv:1309.1978

It is convenient to write function f (R) as

f (R) = R + αh(R), (101)

The field equations are

(1 + αhR )Gµν −
1

2
α(h − hRR)gµν − α(∇µ∇ν − gµν�)hR =

8πG

c4
Tµν . (102)

Spherically symmetric metric with two independent functions of radial coordinate:

ds2 = −e2φc2dt2 + e2λdr2 + r2(dθ2 + sin2
θdφ2). (103)

The energy–momentum tensor Tµν = diag(e2φρc2, e2λP, r2P, r2 sin2 θP), where ρ is the matter
density and P is the pressure. The components of the field equations are

−8πG

c2
ρ = −r−2 + e−2λ(1− 2rλ′)r−2 + αhR (−r−2 + e−2λ(1− 2rλ′)r−2)

−
1

2
α(h − hRR) + e−2λ

α[h′R r
−1(2− rλ′) + h′′R ], (104)

8πG

c4
P = −r−2 + e−2λ(1 + 2rφ′)r−2 + αhR (−r−2 + e−2λ(1 + 2rφ′)r−2)

−
1

2
α(h − hRR) + e−2λ

αh′R r
−1(2 + rφ′), (105)

where prime denotes derivative with respect to radial distance, r .
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Stable neutron stars from f (R) gravity

For the exterior solution, we assume a Schwarzschild solution. For this reason, it is convenient to
define the change of variable

e−2λ = 1−
2GM

c2r
. (106)

The value of parameter M on the surface of a neutron star can be considered as a gravitational star
mass. Useful relation

GdM

c2dr
=

1

2

[
1− e−2λ(1− 2rλ′]

)
, (107)

.
The hydrostatic condition of equilibrium can be obtained from the Bianchi identities

dP

dr
= −(ρ + P/c2)

dφ

dr
, . (108)

The second TOV equation can be obtained by substitution of the derivative dφ/dr from (108) in
Eq.(105). The dimensionless variables

M = mM�, r → rg r , ρ→ ρM�/r
3
g , P → pM�c

2
/r3

g , R → R/r2
g .

Here M� is the Sun mass and rg = GM�/c
2 = 1.47473 km. Eqs. (104), (105) can be rewritten

as(
1 + αr2

g hR +
1

2
αr2

g h
′
R r

)
dm

dr
= 4πρr2 −

1

4
αr2r2

g

(
h − hRR − 2

(
1−

2m

r

)(
2h′R
r

+ h′′R

))
,

(109)

8πp = −2
(

1 + αr2
g hR
) m

r3
−
(

1−
2m

r

)(
2

r
(1 + αr2

g hR ) + αr2
g h
′
R

)
(ρ + p)−1 dp

dr
− (110)

−
1

2
αr2

g

(
h − hRR − 4

(
1−

2m

r

)
h′R
r

)
,

where ′ = d/dr .
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Stable neutron stars from f (R) gravity

For α = 0, Eqs. (109), (110) reduce to

dm

dr
= 4πρ̃r2 (111)

dp

dr
= −

4πpr3 + m

r(r − 2m)
(ρ̃ + p) , (112)

i.e. to ordinary dimensionless TOV equations. These equations can be solved numerically for a given
EoS p = f (ρ) and initial conditions m(0) = 0 and ρ(0) = ρc .
For non-zero α, one needs the third equation for the Ricci curvature scalar. The trace of field Eqs.
(102) gives the relation

3α�hR + αhRR − 2αh − R = −
8πG

c4
(−3P + ρc2). (113)

In dimensionless variables, we have

3αr2
g

((
2

r
−

3m

r2
−

dm

rdr
−
(

1−
2m

r

)
dp

(ρ + p)dr

)
d

dr
+

(
1−

2m

r

)
d2

dr2

)
hR

+ αr2
g hRR − 2αr2

g h − R = −8π(ρ− 3p) . (114)

We need to add the EoS for matter inside star to the Eqs. (109), (110), (114). Standard polytropic
EoS p ∼ ργ works, although a more realistic EoS has to take into account different physical states
for different regions of the star and it is more complicated.
Perturbative solution. For a perturbative solution the density, pressure, mass and curvature can be
expanded as

p = p(0) + αp(1) + ..., ρ = ρ
(0) + αρ

(1) + ..., (115)

m = m(0) + αm(1) + ..., R = R(0) + αR(1) + ...,

where functions ρ(0), p(0), m(0) and R(0) satisfy to standard TOV equations assumed at zeroth order.

Terms containing hR are assumed to be of first order in the small parameter α, so all such terms

should be evaluated at O(α) order.
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Stable neutron stars from f (R) gravity

For m = m(0) + αm(1), the following equation

dm

dr
= 4πρr2−αr2

(
4πρ(0)hR +

1

4
(h − hRR)

)
+

1

2
α

((
2r − 3m(0) − 4πρ(0)r3

) d

dr
+ r(r − 2m(0))

d2

dr2

)
hR

(116)

for pressure p = p(0) + αp(1)

r − 2m

ρ + p

dp

dr
= 4πr2p +

m

r
− αr2

(
4πp(0)hR +

1

4
(h − hRR)

)
− α

(
r − 3m(0) + 2πp(0)r3

) dhR

dr
.

(117)
The Ricci curvature scalar, in terms containing hR and h, has to be evaluated at O(1) order, i.e.

R ≈ R(0) = 8π(ρ(0) − 3p(0)) . (118)

We can consider various EoS for the description of the behavior of nuclear matter at high densities.
For example the SLy and FPS equation have the same analytical representation:

ζ =
a1 + a2ξ + a3ξ

3

1 + a4ξ
f (a5(ξ − a6)) + (a7 + a8ξ)f (a9(a10 − ξ))+ (119)

+(a11 + a12ξ)f (a13(a14 − ξ)) + (a15 + a16ξ)f (a17(a18 − ξ)),

where

ζ = log(P/dyncm−2) , ξ = log(ρ/gcm−3) , f (x) =
1

exp(x) + 1
.

The coefficients ai for SLy and FPS EoS are different.
Neutron star with a quark core. The quark matter can be described by the very simple EoS:

pQ = a(ρ− 4B), (120)

where a is a constant and the parameter B can vary from ∼ 60 to 90 Mev/fm3.
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For quark matter with massless strange quark, it is a = 1/3. We consider a = 0.28 corresponding
to ms = 250 Mev. For numerical calculations, Eq. (120) is used for ρ ≥ ρtr , where ρtr is the
transition density for which the pressure of quark matter coincides with the pressure of ordinary
dense matter. For example for FPS equation, the transition density is ρtr = 1.069 × 1015 g/cm3

(B = 80 Mev/fm3), for SLy equation ρtr = 1.029× 1015 g/cm3 (B = 60 Mev/fm3).

Model 1.
f (R) = R + βR(exp(−R/R0)− 1), (121)

We can assume, for example, R = 0.5r−2
g . For R << R0 this model coincides with quadratic model

of f (R) gravity.
For neutron stars models with quark core, there is no significant differences with respect to General
Relativity. For a given central density, the star mass grows with α. The dependence is close to
linear for ρ ∼ 1015g/cm3. For the piecewise equation of state ( FPS case for ρ < ρtr ) the maximal
mass grows with increasing α. For β = −0.25, the maximal mass is 1.53M�, for β = 0.25,
Mmax = 1.59M� (in General Relativity, it is Mmax = 1.55M�). With an increasing β, the maximal
mass is reached at lower central densities. Furthermore, for dM/dρc < 0, there are no stable star
configurations. A similar situation is observed in the SLy case but mass grows with β more slowly.

For the simplified EoS (119), other interesting effects can occur. For β ∼ −0.15 at high central

densities (ρc ∼ 3.0 − 3.5 × 1015g/cm3), we have the dependence of the neutron star mass from

radius and from central density. For β < 0 for high central densities we have the stable star

configurations (dM/dρc > 0).
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For example the measurement of mass of the neutron star PSR J1614-2230 with 1.97 ± 0.04 M�
provides a stringent constraint on any M − R relation. The model with SLy equation is more
interesting: in the context of model (121), the upper limit of neutron star mass is around 2M� and
there is second branch of stability star configurations at high central densities. This branch describes
observational data better than the model with SLy EoS in GR.
Possibility of a stabilization mechanism in f (R) gravity which leads to the existence of stable neutron
stars which are more compact objects than in General Relativity. Cubic model.

f (R) = R + αR2(1 + γR) . (122)

Let |γR| ∼ O(1) for large R and αR2(1 + γR) << R. For small masses, the results coincide

with R2 model. For γ = −10 (in units r2
g ) the maximal mass of neutron star at high densities

ρ > 3.7× 1015 g/cm3 is nearly 1.88M� and radius is about ∼ 9 km (SLy equation). For γ = −20
the maximal mass is 1.94M� and radius is about ∼ 9.2 km . In the GR, for SLy equation, the
minimal radius of neutron stars is nearly 10 km. Therefore such a model of f (R) gravity can give
rise to neutron stars with smaller radii than in GR. Therefore such theory can describe (assuming
only the SLy equation), the existence of peculiar neutron stars with mass ∼ 2M� (the measured
mass of PSR J1614-2230) and compact stars (R ∼ 9 km) with masses M ∼ 1.6− 1.7M�.
For smaller values of γ the minimal neutron star mass (and minimal central density at which stable
stars exist) on second branch of stability decreases.

It is interesting to note that for negative and sufficiently large values of ε, the maximal limit of

neutron star mass can exceed the limit in General Relativity for given EoS (the stable stars exist for

higher central densities). Therefore some EoS which ruled out by observational constraints in GR

can describe real star configurations in frames of such model of gravity. One has to note that the

upper limit in this model of gravity is achieved for smaller radii than in GR for acceptable EoS.
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Topological Gauss-Bonnet invariant:

G = R2 − 4RµνR
µν + RµνξσR

µνξσ
, (123)

is added to the action of the Einstein gravity. One starts with the following action:

S =

∫
d4x
√
−g
(

1

2κ2
R + f (G) + Lmatter

)
. (124)

Here, Lmatter is the Lagrangian density of matter. The variation of the metric gµν :

0 =
1

2κ2

(
−Rµν +

1

2
gµνR

)
+ Tµνmatter +

1

2
gµν f (G)− 2f ′(G)RRµν

+ 4f ′(G)RµρR
νρ − 2f ′(G)RµρστRνρστ − 4f ′(G)RµρσνRρσ + 2

(
∇µ∇ν f ′(G)

)
R

− 2gµν
(
∇2f ′(G)

)
R − 4

(
∇ρ∇µf ′(G)

)
Rνρ − 4

(
∇ρ∇ν f ′(G)

)
Rµρ

+ 4
(
∇2f ′(G)

)
Rµν + 4gµν

(
∇ρ∇σf ′(G)

)
Rρσ − 4

(
∇ρ∇σf ′(G)

)
Rµρνσ . (125)

The first FRW equation:

0 = −
3

κ2
H2 − f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter . (126)

Here G has the following form:

G = 24
(
H2Ḣ + H4

)
. (127)

the FRW-like equations (fluid description):

ρ
G
eff =

3

κ2
H2
, pGeff = −

1

κ2

(
3H2 + 2Ḣ

)
. (128)
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Here,

ρ
G
eff ≡− f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter ,

pGeff ≡f (G)− Gf ′(G) +
2GĠ
3H

f ′′(G) + 8H2G̈f ′′(G) + 8H2Ġ2f ′′′(G) + pmatter . (129)

When ρmatter = 0, Eq. (126) has a de Sitter universe solution where H, and therefore G, are
constant. For H = H0, with a constant H0, Eq. (126) turns into

0 = −
3

κ2
H2

0 + 24H4
0 f
′
(

24H4
0

)
− f

(
24H4

0

)
. (130)

As an example, we consider the model

f (G) = f0 |G|β , (131)

with constants f0 and β. Then, the solution of Eq. (130) is given by

H4
0 =

1

24 (8 (n − 1)κ2f0)
1

β−1

. (132)

No matter and GR. Eq. (126) reduces to

0 = Gf ′(G)− f (G)− 24Ġf ′′(G)H3
. (133)

If f (G) behaves as (131), assuming

a =

{
a0t

h0 when h0 > 0 (quintessence)

a0 (ts − t)h0 when h0 < 0 (phantom)
, (134)

one obtains
0 = (β − 1) h6

0 (h0 − 1) (h0 − 1 + 4β) . (135)
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As h0 = 1 implies G = 0, one may choose

h0 = 1− 4β , (136)

and Eq. (3) gives

weff = −1 +
2

3(1− 4β)
. (137)

Therefore, if β > 0, the universe is accelerating (weff < −1/3), and if β > 1/4, the universe is in
a phantom phase (weff < −1). Thus, we are led to consider the following model:

f (G) = fi |G|βi + fl |G|βl , (138)

where it is assumed that

βi >
1

2
,

1

2
> βl >

1

4
. (139)

Then, when the curvature is large, as in the primordial universe, the first term dominates, compared
with the second term and the Einstein term, and it gives

− 1 > weff = −1 +
2

3(1− 4βi )
> −

5

3
. (140)

On the other hand, when the curvature is small, as is the case in the present universe, the second
term in (138) dominates compared with the first term and the Einstein term and yields

weff = −1 +
2

3(1− 4βl )
< −

5

3
. (141)

Therefore, theory (138) can produce a model that is able to describe inflation and the late-time

acceleration of the universe in a unified manner.
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The action (124) can be rewritten by introducing the auxiliary scalar field φ as,

S =

∫
d4x
√
−g
[

R

2κ2
− V (φ)− ξ(φ)G

]
. (142)

By variation over φ, one obtains
0 = V ′(φ) + ξ

′(φ)G , (143)

which could be solved with respect to φ as

φ = φ(G) . (144)

By substituting the expression (144) into the action (142), we obtain the action of f (G) gravity,
with

f (G) = −V (φ(G)) + ξ (φ(G))G . (145)

Assuming a spatially-flat FRW universe and the scalar field φ to depend only on t, we obtain the
field equations:

0 =−
3

κ2
H2 + V (φ) + 24H3 dξ(φ(t))

dt
, (146)

0 =
1

κ2

(
2Ḣ + 3H2

)
− V (φ)− 8H2 d

2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (147)

Combining the above equations, we obtain

0 =
2

κ2
Ḣ − 8H2 d

2ξ(φ(t))

dt2
− 16HḢ

dξ(φ(t))

dt
+ 8H3 dξ(φ(t))

dt

=
2

κ2
Ḣ − 8a

d

dt

(
H2

a

dξ(φ(t))

dt

)
, (148)
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which can be solved with respect to ξ(φ(t)) as

ξ(φ(t)) =
1

8

∫ t

dt1
a(t1)

H(t1)2
W (t1) , W (t) ≡

2

κ2

∫ t dt1

a(t1)
Ḣ(t1) . (149)

Combining (146) and (149), the expression for V (φ(t)) follows:

V (φ(t)) =
3

κ2
H(t)2 − 3a(t)H(t)W (t) . (150)

As there is a freedom of redefinition of the scalar field φ, we may identify t with φ. Hence, we
consider the model where V (φ) and ξ(φ) can be expressed in terms of a single function g as

V (φ) =
3

κ2
g ′ (φ)2 − 3g ′ (φ) eg(φ)U(φ) ,

ξ(φ) =
1

8

∫ φ

dφ1
eg(φ1)

g ′(φ1)2
U(φ1) ,

U(φ) ≡
2

κ2

∫ φ

dφ1e
−g(φ1)g ′′ (φ1) . (151)

By choosing V (φ) and ξ(φ) as (151), one can easily find the following solution for Eqs.(146) and
(147):

a = a0e
g(t) (H = g ′(t)

)
. (152)

Therefore one can reconstruct F (G) gravity to generate arbitrary expansion history of the universe.
Thus, we reviewed the modified Gauss-Bonnet gravity and demonstrated that it may naturally lead
to the unified cosmic history, including the inflation and dark energy era.
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Stringy gravity:

S =

∫
d4x
√
−g
[
R

2
+ Lφ + Lc + . . .

]
, (153)

where φ is the dilaton, Lφ is the Lagrangian of φ, and Lc expresses the string curvature correction
terms,

Lφ = −∂µφ∂µφ− V (φ) , Lc = c1α
′
e

2
φ
φ0 L(1)

c + c2α
′2
e

4
φ
φ0 L(2)

c + c3α
′3
e

6
φ
φ0 L(3)

c , (154)

where 1/α′ is the string tension, L(1)
c , L(2)

c , and L(3)
c express the leading-order (Gauss-Bonnet term

G in (123)), the second-order, and the third-order curvature corrections, respectively:

L(1)
c = Ω2 , L(2)

c = 2Ω3 + RµναβR
αβ
λρ Rλρµν , L

(3)
c = L31 − δHL32 −

δB

2
L33 . (155)

Here, δB and δH take the value of 0 or 1 and

Ω2 = G ,

Ω3 ∝ εµνρστηεµ′ν′ρ′σ′τ′η′R
µ′ν′

µν R ρ′σ′
ρσ R τ′η′

τη ,

L31 = ζ(3)RµνρσR
ανρβ

(
RµγδβR

δσ
αγ − 2RµγδαR

δσ
βγ

)
,

L32 =
1

8

(
RµναβR

µναβ
)2

+
1

4
R γδ
µν R ρσ

γδ R αβ
ρσ R µν

αβ −
1

2
R αβ
µν R ρσ

αβ RµσγδR
νγδ
ρ −R αβ

µν R ρν
αβ R γδ

ρσ R µσ
γδ ,

L33 =
(
RµναβR

µναβ
)2
− 10RµναβR

µνασRσγδρR
βγδρ − RµναβR

µνρ
σR

βσγδR α
δγρ .(156)

The correction terms are different depending on the type of string theory; the dependence is encoded
in the curvature invariants and in the coefficients (c1, c2, c3) and δH , δB , as follows,

For the Type II superstring theory: (c1, c2, c3) = (0, 0, 1/8) and δH = δB = 0.

For the heterotic superstring theory: (c1, c2, c3) = (1/8, 0, 1/8) and δH = 1, δB = 0.

For the bosonic superstring theory: (c1, c2, c3) = (1/4, 1/48, 1/8) and δH = 0, δB = 1.
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The starting action is:

S =

∫
d4x
√
−g
[

R

2κ2
−

1

2
∂µφ∂

µ
φ− V (φ)− ξ(φ)G

]
. (157)

Field equations:

0 =
1

κ2

(
−Rµν +

1

2
gµνR

)
+

1

2
∂
µ
φ∂

ν
φ−

1

4
gµν∂ρφ∂

ρ
φ +

1

2
gµν (−V (φ) + ξ(φ)G)

− 2ξ(φ)RRµν − 4ξ(φ)RµρR
νρ − 2ξ(φ)RµρστRνρστ + 4ξ(φ)RµρνσRρσ

+ 2
(
∇µ∇νξ(φ)

)
R − 2gµν

(
∇2
ξ(φ)

)
R − 4

(
∇ρ∇µξ(φ)

)
Rνρ − 4

(
∇ρ∇νξ(φ)

)
Rµρ

+ 4
(
∇2
ξ(φ)

)
Rµν + 4gµν (∇ρ∇σξ(φ)) Rρσ + 4 (∇ρ∇σξ(φ)) Rµρνσ . (158)

FRW eq.:

0 =−
3

κ2
H2 +

1

2
φ̇

2 + V (φ) + 24H3 dξ(φ(t))

dt
, (159)

0 =
1

κ2

(
2Ḣ + 3H2

)
+

1

2
φ̇

2 − V (φ)− 8H2 d
2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (160)

Scalar equation
0 = φ̈ + 3Hφ̇ + V ′(φ) + ξ

′(φ)G . (161)
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In particular when we consider the following string-inspired model,

V = V0e
− 2φ
φ0 , ξ(φ) = ξ0e

2φ
φ0 , (162)

the de Sitter space solution follows:

H2 = H2
0 ≡ −

e
− 2ϕ0
φ0

8ξ0κ2
, φ = ϕ0 . (163)

Here, ϕ0 is an arbitrary constant. If ϕ0 is chosen to be larger, the Hubble rate H = H0 becomes
smaller. Then, if ξ0 ∼ O(1), by choosing ϕ0/φ0 ∼ 140, the value of the Hubble rate H = H0 is
consistent with the observations. The model (162) also has another solution:

H =
h0
t , φ = φ0 ln t

t1
when h0 > 0 ,

H = − h0
ts−t , φ = φ0 ln ts−t

t1
when h0 < 0 . (164)

Here, h0 is obtained by solving the following algebraic equations:

0 = −
3h2

0

κ2
+
φ2

0

2
+ V0t

2
1 −

48ξ0h
3
0

t2
1

, 0 = (1− 3h0)φ2
0 + 2V0t

2
1 +

48ξ0h
3
0

t2
1

(h0 − 1) . (165)

Eqs. (165) can be rewritten as

V0t
2
1 =−

1

κ2 (1 + h0)

{
3h2

0 (1− h0) +
φ2

0κ
2 (1− 5h0)

2

}
, (166)

48ξ0h
2
0

t2
1

=−
6

κ2 (1 + h0)

(
h0 −

φ2
0κ

2

2

)
. (167)

The arbitrary value of h0 can be realized by properly choosing V0 and ξ0. With the appropriate
choice of V0 and ξ0, we can obtain a negative h0 and, therefore, the effective EoS parameter (3) is
less than −1, weff < −1, which corresponds to the effective phantom.
For example, if h0 = −80/3 < −1 and, therefore, w = −1.025, which is consistent with the
observed value, we find

V0t
2
1 =

1

κ2

(
531200

231
+

403

154
γφ

2
0κ

2
)
> 0 ,

f0

t2
1

=−
1

κ2

(
9

49280
+

27

7884800
γφ

2
0κ

2
)
. (168)
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Non-linear massive gravity (with non-dynamical background metric) was extended to the ghost-free
construction with the dynamical metric (Hassan et al).
The convenient description of the theory gives bigravity or bimetric gravity which contains two
metrics (symmetric tensor fields). One of two metrics is called physical metric while second metric
is called reference metric.
Next is F (R) bigravity which is also ghost-free theory. We introduce four kinds of metrics, gµν , gJ

µν ,

fµν , and f Jµν . The physical observable metric gJ
µν is the metric in the Jordan frame. The metric

gµν corresponds to the metric in the Einstein frame in the standard F (R) gravity and therefore the
metric gµν is not physical metric. In the bigravity theories, we have to introduce another reference

metrics or symmetric tensor fµν and f Jµν . The metric fµν is the metric corresponding to the Einstein

frame with respect to the curvature given by the metric fµν . On the other hand, the metric f Jµν is
the metric corresponding to the Jordan frame.
The starting action is given by

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βn en
(√

g−1f
)
. (169)

Here R(g) is the scalar curvature for gµν and R(f ) is the scalar curvature for fµν . Meff is defined by

1

M2
eff

=
1

M2
g

+
1

M2
f

. (170)

Furthermore, tensor
√

g−1f is defined by the square root of gµρfρν , that is,
(√

g−1f
)µ
ρ

(√
g−1f

)ρ
ν

=

gµρfρν .
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For general tensor Xµν , en(X )’s are defined by

e0(X ) = 1 , e1(X ) = [X ] , e2(X ) = 1
2 ([X ]2 − [X 2]) ,

e3(X ) = 1
6 ([X ]3 − 3[X ][X 2] + 2[X 3]) ,

e4(X ) = 1
24 ([X ]4 − 6[X ]2[X 2] + 3[X 2]2 + 8[X ][X 3]− 6[X 4]) ,

ek (X ) = 0 for k > 4 . (171)

Here [X ] expresses the trace of arbitrary tensor Xµν : [X ] = Xµµ. In order to construct the consistent

F (R) bigravity, we add the following terms to the action (169):

Sϕ = −M2
g

∫
d4x
√
− det g

{
3

2
gµν∂µϕ∂νϕ + V (ϕ)

}
+

∫
d4xLmatter

(
e
ϕgµν ,Φi

)
, (172)

Sξ = −M2
f

∫
d4x
√
− det f

{
3

2
f µν∂µξ∂νξ + U(ξ)

}
. (173)

By the conformal transformations gµν → e−ϕgJ
µν and fµν → e−ξf Jµν , the total action SF =

Sbi + Sϕ + Sξ is transformed as

SF =M2
f

∫
d4x
√
− det f J

{
e
−ξRJ(f ) − e

−2ξU(ξ)
}

+ 2m2M2
eff

∫
d4x
√
− det gJ

4∑
n=0

βne

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJ

{
e
−ϕRJ(g) − e

−2ϕV (ϕ)
}

+

∫
d4xLmatter

(
gJ
µν ,Φi

)
. (174)
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The kinetic terms for ϕ and ξ vanish. By the variations with respect to ϕ and ξ as in the case of
convenient F (R) gravity, we obtain

0 =2m2M2
eff

4∑
n=0

βn

(
n

2
− 2

)
e

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)
+ M2

g

{
−e−ϕRJ(g)

+2e−2ϕV (ϕ) + e
−2ϕV ′(ϕ)

}
, (175)

0 =− 2m2M2
eff

4∑
n=0

βnn

2
e

(
n
2
−2
)
ϕ− n

2
ξ
en

(√
gJ−1f J

)
+ M2

f

{
−e−ξRJ(f ) + 2e−2ξU(ξ) + e

−2ξU′(ξ)
}
.

(176)

The Eqs. (175) and (176) can be solved algebraically with respect to ϕ and ξ as

ϕ = ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
and

ξ = ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
. Substituting above ϕ and ξ into (174), one gets F (R) bigravity:

SF = M2
f

∫
d4x
√
− det f JF (f )

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βne

(
n
2
−2
)
ϕ

(
RJ(g),en

(√
gJ−1 f J

))
en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJFJ(g)

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
+

∫
d4xLmatter

(
gJ
µν ,Φi

)
,

(177)
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F (R) bigravity

FJ(g)
(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
≡
{
e
−ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(g)

−e
−2ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
V

(
ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
, (178)

F (f )
(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
≡
{
e
−ξ
(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(f )

−e
−2ξ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
U

(
ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
. (179)

Note that it is difficult to solve Eqs. (175) and (176) with respect to ϕ and ξ explicitly. Therefore,

it might be easier to define the model in terms of the auxiliary scalars ϕ and ξ as in (174).
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

Let us consider the cosmological reconstruction program. For simplicity, we start from the minimal
case

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

(
3− tr

√
g−1f + det

√
g−1f

)
. (180)

In order to evaluate δ
√

g−1f , two matrices M and N, which satisfy the relation M2 = N are taken.
Since δMM + MδM = δN, one finds

tr δM =
1

2
tr
(
M−1

δN
)
. (181)

For a while, we consider the Einstein frame action (180) with (172) and (173) but matter contribution
is neglected. Then by the variation over gµν , we obtain

0 =M2
g

(
1

2
gµνR

(g) − R(g)
µν

)
+ m2M2

eff

{
gµν

(
3− tr

√
g−1f

)
+

1

2
fµρ
(√

g−1f
)−1 ρ

ν
+

1

2
fνρ
(√

g−1f
)−1 ρ

µ

}
+ M2

g

[
1

2

(
3

2
gρσ∂ρϕ∂σϕ + V (ϕ)

)
gµν −

3

2
∂µϕ∂νϕ

]
. (182)

On the other hand, by the variation over fµν , we get

0 =M2
f

(
1

2
fµνR

(f ) − R(f )
µν

)
+ m2M2

eff

√
det (f−1g)

{
−

1

2
fµρ
(√

g−1f
)ρ
ν

−
1

2
fνρ
(√

g−1f
)ρ
µ

+ det
(√

g−1f
)
fµν

}
+ M2

f

[
1

2

(
3

2
f ρσ∂ρξ∂σξ + U(ξ)

)
fµν −

3

2
∂µξ∂νξ

]
.

(183)
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

We should note that det
√
g det

√
g−1f 6=

√
det f in general. The variations of the scalar fields ϕ

and ξ are given by
0 = −3�gϕ + V ′(ϕ) , 0 = −3�f ξ + U′(ξ) . (184)

Here �g (�f ) is the d’Alembertian with respect to the metric g (f ). By multiplying the covariant
derivative ∇µg with respect to the metric g with Eq. (182) and using the Bianchi identity 0 =

∇µg
(

1
2 gµνR

(g) − R(g)
µν

)
and Eq. (184), we obtain

0 =− gµν∇µg
(
tr
√

g−1f
)

+
1

2
∇µg

{
fµρ
(√

g−1f
)−1 ρ

ν
+ fνρ

(√
g−1f

)−1 ρ

µ

}
. (185)

Similarly by using the covariant derivative ∇µf with respect to the metric f , from (183), we obtain

0 =∇µf

[√
det (f−1g)

{
−

1

2

(√
g−1f

)−1ν

σ
gσµ −

1

2

(√
g−1f

)−1µ

σ
gσν + det

(√
g−1f

)
f µν
}]

.

(186)

In case of the Einstein gravity, the conservation law of the energy-momentum tensor depends from
the Einstein equation. It can be derived from the Bianchi identity. In case of bigravity, however, the
conservation laws of the energy-momentum tensor of the scalar fields are derived from the scalar
field equations. These conservation laws are independent of the Einstein equation. The Bianchi
identities give equations (185) and (186) independent of the Einstein equation.
We now assume the FRW universes for the metrics gµν and fµν and use the conformal time t for
the universe with metric gµν :

ds2
g =

3∑
µ,ν=0

gµνdx
µdxν = a(t)2

(
−dt2 +

3∑
i=1

(
dx i
)2

)
,

ds2
f =

3∑
µ,ν=0

fµνdx
µdxν = −c(t)2dt2 + b(t)2

3∑
i=1

(
dx i
)2

. (187)
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

Then (t, t) component of (182) gives

0 = −3M2
gH

2 − 3m2M2
eff

(
a2 − ab

)
+

(
3

4
ϕ̇

2 +
1

2
V (ϕ)a(t)2

)
M2

g , (188)

and (i, j) components give

0 =M2
g

(
2Ḣ + H2

)
+ m2M2

eff

(
3a2 − 2ab − ac

)
+

(
3

4
ϕ̇

2 −
1

2
V (ϕ)a(t)2

)
M2

g . (189)

Here H = ȧ/a. On the other hand, (t, t) component of (183) gives

0 = −3M2
f K

2 + m2M2
effc

2

(
1−

a3

b3

)
+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f , (190)

and (i, j) components give

0 =M2
f

(
2K̇ + 3K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− c2

)

+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f . (191)

Here K = ḃ/b and L = ċ/c. Both of Eq. (185) and Eq. (186) give the identical equation:

cH = bK or
cȧ

a
= ḃ . (192)

If ȧ 6= 0, we obtain c = aḃ/ȧ. On the other hand, if ȧ = 0, we find ḃ = 0, that is, a and b are

constant and c can be arbitrary.
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

We now redefine scalars as ϕ = ϕ(η) and ξ = ξ(ζ) and identify η and ζ with the conformal time
t, η = ζ = t. Hence, one gets

ω(t)M2
g =− 4M2

g

(
Ḣ − H2

)
− 2m2M2

eff (ab − ac) , (193)

Ṽ (t)a(t)2M2
g =M2

g

(
2Ḣ + 4H2

)
+ m2M2

eff (6a2 − 5ab − ac) , (194)

σ(t)M2
f =− 4M2

f

(
K̇ − LK

)
− 2m2M2

eff

(
−

c

b
+ 1

)
a3c

b2
, (195)

Ũ(t)c(t)2M2
f =M2

f

(
2K̇ + 6K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− 2c2 +

a3c2

b3

)
. (196)

Here

ω(η) = 3ϕ′(η)2
, Ṽ (η) = V (ϕ (η)) , σ(ζ) = 3ξ′(ζ)2

, Ũ(ζ) = U (ξ (ζ)) . (197)

Therefore for arbitrary a(t), b(t), and c(t) if we choose ω(t), Ṽ (t), σ(t), and Ũ(t) to satisfy

Eqs. (193-196), the cosmological model with given a(t), b(t) and c(t) evolution can be recon-

structed. Following this technique we presented number of inflationary and/or dark energy models

as well as unified inflation-dark energy cosmologies. The method is general and maybe applied to

more exotic and more complicated cosmological solutions.



Intro F (R) gravity Trace-anomaly and inflation Neutron stars in f (R) f (G) gravity String-inspired model F (R) bigravity What’s the next?

What is the next?

What is the next? So far F(R) gravity which also admits extensions as HL or massive
gravity is considered to be the best: simplest formulation, ghost-free, easy emergence
of unified description for the universe evolution, friendly passing of cosmological bounds
and local tests, absence of singularities in some versions(Bamba-Nojiri-Odintsov 2007),
possibility of easy further modifications. More deep cosmological tests are necessary to
understand if this is final phenomenological theory of universe and how it is related with
yet to be constructed QG!
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