Nuclear Dark Matter

Ed Hardy

E.H., R. Lasenby, J. March-Russell, S. West

arXiv:1411.3739 (JHEP 1506 011) , arXiv:1504.05419 (JHEP 1507 133)

15.09.2015

Large Composite Dark Matter States

Standard model: conserved baryon number, attractive interactions lead to a multitude of large, stable bound states (nuclei!).

What if a similar thing happens for dark matter?

Not so implausible: strong coupling is a very reasonable way for the DM mass scale to be generated

Can states of large dark nucleon number be built up in the early universe?

Possible Consequences

- Very heavy DM $\gtrsim 10^3\,{\rm TeV}$ (usually disfavoured for freeze-out, and in asymmetric DM models)
- Different sized states important at different stages in cosmological history- changing 'properties'
- Coherent enhancement of interactions, e.g. direct detection vs. collider limits
- Structure at parametrically smaller energy scales than constituents (overall size, maybe shell structures) leads to form factors in direct detection.
- Inelastic modes: 'high energy' fissions/ fusions at typical binding energy scale, collective excitations at parametrically lower energies $\sim \frac{\epsilon}{R}$

All of these depend on the spectrum of dark matter states

This talk

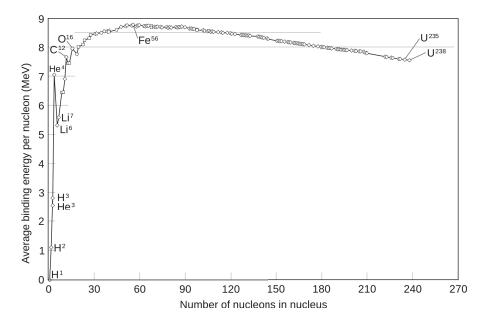
1 Dark nucleosynthesis

2 Solutions to the aggregation equations

- 3 Effect on direct detection
- 4 Astrophysics & Phenomenology

Try to be as model independent as possible

Standard Model



Dark Sector

Assume:

- Approximately conserved nucleon number (*A*), asymmetric dark matter simplest (symmetric also interesting)
- Relatively short-range strong 'nuclear' binding force
- Hard core repulsion
- No dark analogy of the photon

Then binding energy per dark nucleon saturates at large A:

$$\frac{B_A}{A} = \alpha - \frac{\beta}{A^{1/3}},$$

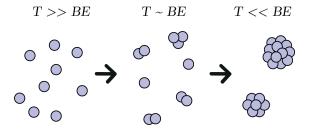
Small A: states/ interactions have complicated properties Large A: cross sections scale geometrically, constant density

Dark Nucleosynthesis

Free energy F = E - TS

large T \implies everything dissociated

small T \implies large states favoured



Freeze out of Dissociations

Equilibirum number densities

$$\frac{\tilde{n}_{A}}{\tilde{n}_{A-k}\tilde{n}_{k}} = \frac{g_{A}}{g_{k}g_{A-k}} \left(\frac{2\pi}{m_{A}T}\frac{m_{A}^{2}}{m_{k}m_{A-k}}\right)^{3/2} e^{(B_{A}-B_{k}-B_{A-k})/T},$$

Fusion dominates once T drops enough that

$$\frac{n_k n_{A-k}}{n_A} \gg \frac{\tilde{n}_k \tilde{n}_{A-k}}{\tilde{n}_A}$$

$$\Leftrightarrow \quad n_0 \left(2\pi/(m_1 T)\right)^{3/2} e^{\Delta B/T} \gg 1$$

- DM is fairly dilute so $n_0 \left(2\pi/(m_1 T)
 ight)^{3/2} \ll 1$
- Transition at $\mathcal{T} \ll \Delta B$ (around $1\,\mathrm{MeV}$ for SM)
- Exponential dependence, transitions in a small fraction of a Hubble time- much smaller than time fusions occur for.

Freeze-out of fusions

Peaked mass distribution: fusions always of form $A + A \rightarrow 2A$

$$\frac{\Gamma}{H} \sim \frac{\sigma_1 v_1 n_0}{H} A^{2/3} A^{-1/2} A^{-1} = \frac{\sigma_1 v_1 n_0}{H} A^{-5/6},$$

$$\begin{split} & \frac{\sigma_1 v_1 n_0}{H} \sim 2 \times 10^7 \, \left(\frac{1 \, \mathrm{GeV \, fm^{-3}}}{\rho_b}\right)^{2/3} \left(\frac{g_\star(T)}{10.75}\right)^{1/2} \left(\frac{m_1}{1 \, \mathrm{GeV}}\right)^{-5/6} \left(\frac{T}{1 \, \mathrm{MeV}}\right)^{3/2}, \\ & \text{If dissociation stops being important around } T = 1 \, \mathrm{MeV} \text{ maximum} \\ & \text{mass:} \\ & (2 \times 10^7)^{6/5} m_1 \sim 5 \times 10^8 \, \mathrm{GeV} \end{split}$$

$$2 imes 10^7)^{6/5} m_1 \sim 5 imes 10^8 \, {
m GeV}$$
radius $\sim 480 \, {
m fm}$

Increasing mass scales leads to smaller DM masses, $T \mapsto \lambda T$, $\rho_b \mapsto \lambda^4 \rho_b$, etc. : $m_{f_0} \mapsto \lambda^{-7/5} m_{f_0}$

Significant proportion of mass in small states: last to freeze out are $A + 1 \rightarrow (A + 1)$

Higher number density of small A for given mass fraction, need more fusions for given increase in A, but small A have greater velocities: *enhancement*

$$\begin{split} \langle \sigma \mathbf{v} \rangle_{\mathcal{A}+1} &= \delta \sigma_1 \mathcal{A}^{2/3} \mathbf{v}_1, \\ \Gamma &\sim \langle \sigma \mathbf{v} \rangle n_1 \frac{1}{\mathcal{A}} \sim (1-\alpha) \delta \sigma_1 \mathbf{v}_1 n_0 \mathcal{A}^{2/3} \mathcal{A}^{-1} , \end{split}$$

 $1-\alpha$ is the mass fraction in small A

$$A_{\rm fo} \sim 7 \times 10^{19} \left((1-\alpha) \delta \frac{\sigma_1 v_1 n_0}{H} / 2 \times 10^7 \right)^3,$$

Aggregation equations

Boltzmann equation for k-DN number density, $n_k(t)$, is

$$\frac{dn_k(t)}{dt} + 3H(t)n_k(t) = -\sum_{j=1}^{\infty} \langle \sigma v \rangle_{j,k} n_j(t)n_k(t) + \frac{1}{2} \sum_{i+j=k} \langle \sigma v \rangle_{i,j} n_i(t)n_j(t),$$

Switch to yields $Y_k \equiv n_k/s$, and define a new 'time' variable

$$\frac{dw}{dt}=Y_0\sigma_1v_1(t)s(t)=n_0(t)\sigma_1v_1(t),$$

Gives

$$\frac{dy_k}{dw} = -y_k \sum_j K_{j,k} y_j + \frac{1}{2} \sum_{i+j=k} K_{i,j} y_i y_j \,,$$

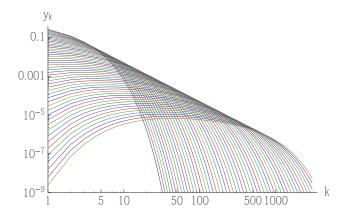
where $K_{i,j}$ encode relative rates of different fusion processes, $y_k = \frac{Y_k}{Y_0}$

Scaling Solution

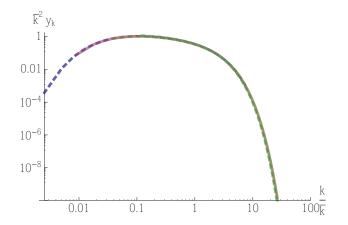
Cross-section \sim (area + area) v_{rel} means

$$K_{i,j} = (i^{2/3} + j^{2/3}) \left(\frac{1}{i^{1/2}} + \frac{1}{j^{1/2}} \right) \,,$$

Number distribution at equally spaced values in log w:

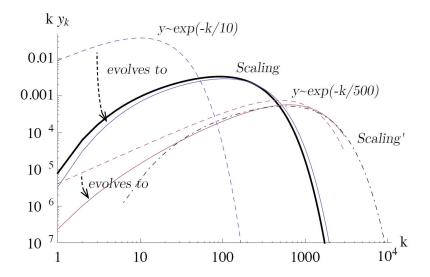


Shape stays the same, average size increases, $s\left(w
ight)\sim w^{6/5}$



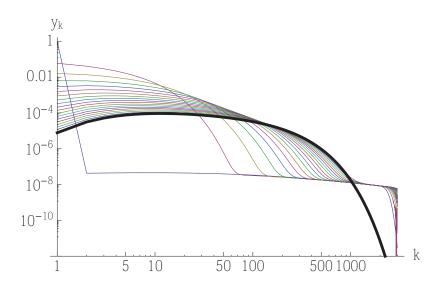
Attractor solution, depending only on large-k behaviour of kernelreach this form (eventually) independent of initial conditions, small-k kernel.

Varying Initial Conditions



Astrophysics & Phenomenology

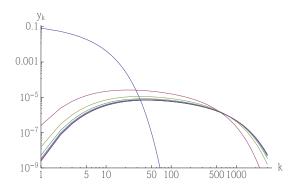
Varying Initial Conditions



Real Time Behaviour

$$\frac{dw}{dT} \simeq -\frac{n_0\sigma_1v_1}{H}\Big|_{T_0} \left(\frac{T}{T_0}\right)^{1/2} \frac{1}{T_0},$$
$$w(T) \simeq \frac{2}{3} \left.\frac{n_0\sigma_1v_1}{H}\right|_{T_0} \left(1 - \left(\frac{T}{T_0}\right)^{3/2}\right)$$

Most of build-up within one Hubble time. Distribution at half e-folding real times:

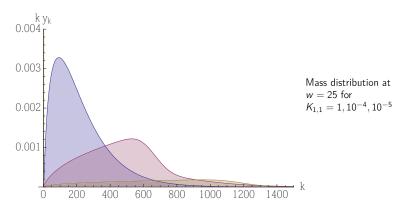


15.09.2015

What if there's a bottle-neck at small numbers?

If $K_{i,j}$ for small *i*, *j* is low enough, and w_{max} is small enough, never reach scaling regime

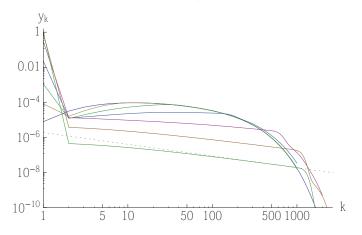
$$rac{dk}{dw}\sim K_{1,k}y_1\sim k^{2/3} \ k_{max}\sim \left(\int dw\,y_1
ight)^3$$



Ed Hardy

Power-law distribution

Number distribution: w = 25 for $K_{1,1} = 1, 10^{-1}, ..., 10^{-6}$



If we have a bath of small-number states throughout:

$$k \sim (w_{max} - w_{inj})^3 \Rightarrow -\frac{dw_{inj}}{dk} \sim k^{-2/3} \Rightarrow y_k \sim k^{-2/3}$$

15.09.2015

Ed Hardy

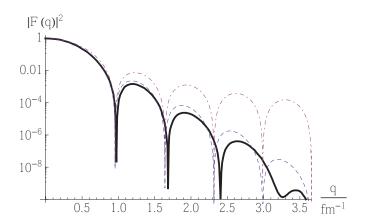
Direct detection

- Interactions with SM coherently enhanced by $A^2 \times$ form factor Number density $\sim \frac{1}{A}$, so total direct detection rate enhanced by A
- For given direct detection rate, production at colliders etc. suppressed.
- Constraints on early-universe annihilations to SM stronger than usual

Form factors

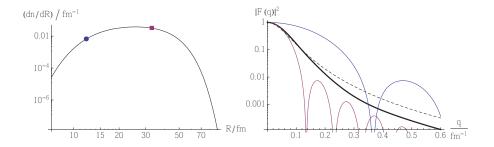
If $R_{DM} > (\Delta p)^{-1}$ probe dark matter form factor, e.g. spherical Bessel

$$F(q) = \frac{3j_1(qR)}{qR}e^{-q^2s^2/2},$$



Scattering cross section

$$\frac{dR}{dE_R} = F_N(q)^2 \sum_i g_i(v_{\min}(\mu_{i,N})) \frac{n_i}{2\mu_{i,n}^2} \frac{|C_i|^2}{|C_n|^2} \sigma_{i,n} F_{X,i}(q)^2,$$



Recoil Spectra For Size Distribution

 $g(v_{\min}) = \int_{v > v_{\min}} d^3 \mathbf{v} \frac{f(\mathbf{v})}{v}$: by choosing $f(\mathbf{v})$ can make g any non-increasing function of v_{\min}

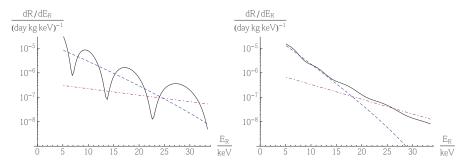
Data from multiple detectors lifts the degeneracy, since $q(v_{\min}) = 2\mu_{XN}v_{\min}$, changing μ_{XN} by changing m_N will change the range of $F_X(q)$

Effective exposures 1.0 ton years in multiple detectors could allow determination of the average DM size to around 25% accuracy. (related work: Cherry, Frandsen, and Shoemaker)

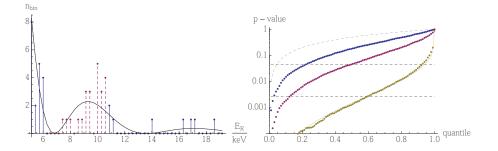
Detectability of Rising Recoil Spectrum

E.g. if sharply peaked number distribution due to binding energy curve turning over

Germanium vs. Xenon



Detectability of Rising Recoil Spectrum



Identify the interval worst fit by a non rising distribution.

Inelastic Modes

Compressional: speed of sound $c_c \sim \sqrt{\frac{K}{\rho}}$, where K parameterises compressibility

$$\delta E_c \sim \sqrt{\frac{\kappa}{\rho} \frac{1}{R}} . \tag{1}$$

Surface: $c_s \sim \sqrt{\frac{\sigma k}{\rho}}$, where σ is the surface tension

$$\delta E_s \sim \sqrt{\frac{\sigma}{\rho}} \frac{1}{R^{3/2}} . \tag{2}$$

same microscopic force so $\sigma \sim R_1 K$, and

$$\frac{\delta E_s}{\delta E_c} \sim A^{-1/6} . \tag{3}$$

(Single constituent excitations $\omega \sim A^{-1/3}/R$ but cross section not enhanced)

15.09.2015

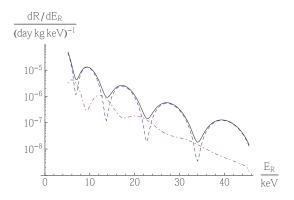
Ed Hardy

Inelastic Modes

Form factors can be computed, e.g. one phonon surface mode

$$F(q) = \frac{3A}{4\pi} i^{l} (2l+1)^{1/2} \epsilon_{l} j_{l} (qR)$$
(4)

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{XN}} + \delta \right)$$
(5)



Phenomenology

- Usual constraints of getting rid of abundances of other hidden sector states and symmetric component (large energy injections to SM safest before BBN)
- New feature release of binding energy from fusions.
- Most binding energy released during dark nucleosynthesis: if inject significant energy to SM, safest before BBN

Self interaction

Observational limit

$$\sigma_{XX}/m_X \lesssim 1 \,\mathrm{barn}/\,\mathrm{GeV}$$
 (6)

NDM:

$$\frac{\sigma_{AA}}{m_A} \simeq \frac{0.05 \,\mathrm{barn}}{\mathrm{GeV}} A^{-1/3} \left(\frac{1 \,\mathrm{GeV}}{m_1}\right)^{1/3} \left(\frac{1 \,\mathrm{GeV} \,\mathrm{fm}^{-3}}{\rho_b}\right)^{2/3}, \quad (7)$$

Self interaction cross sections constrain dark nucleons $\gtrsim 10\,{\rm MeV}$:

Post-nucleosynthesis interactions

More exotic possibilities:

- Endothermic, e.g. scatter to excited states. At $\rho_{DM} \sim 10 A^{1/3} \,\mathrm{GeV cm^{-3}}$ most DN interact (occurs at $r \sim 0.5 A^{-1/3} \,\mathrm{kpc}$ in NFW), run away process?
- Exothermic- get a velocity kick. Possibly clear out high density regions, modify structure on small scales.

Post-nucleosynthesis interactions

Proportion of mass density injected from fusions

$$\begin{split} \langle \sigma v \rangle n_A t_{\rm sys} \frac{\Delta BE}{M_A} &\sim 10^{-3} A^{-2/3} \frac{\Delta BE}{A^{2/3} 0.01 m_1} \left\{ \frac{\rho_{\rm DM}}{0.3 \, {\rm GeV \, cm^{-3}}} \\ & \left(\frac{1 \, {\rm GeV \, fm^{-3}}}{\rho_b} \right)^{2/3} \left(\frac{1 \, {\rm GeV}}{m_1} \right)^{1/3} \left(\frac{v}{10^{-3}} \right) \left(\frac{t_{\rm sys}}{10 \, {\rm Gyr}} \right) \right) \end{split}$$

(c.f. usual DM, s-wave annihilations s-wave annihilations is

$$\langle \sigma v \rangle n_X t_{\rm gal} \sim 3 \times 10^{-8} \left(\frac{100 \,{\rm MeV}}{m_X}\right) \left(\frac{\langle \sigma v \rangle_X}{\rm pb}\right) \left(\frac{\rho_{\rm DM}}{0.3 \,{\rm GeV \, cm^{-3}}}\right) \,,$$

Capture in Astrophysical Objects

Solar capture rate

$$C_{\odot} \simeq 3 \times 10^{19} \, \mathrm{sec}^{-1} \left(\frac{\sigma_{Xn}}{10^{-8} \, \mathrm{pb}} \right) \left(\frac{1 \, \mathrm{TeV}}{m_X} \right)^2,$$

(fraction of incident DM captured $\sim 3 \times 10^{-7} \left(\frac{\sigma_{Xn}/m_X}{10^{-8} \, \mathrm{pb/TeV}} \right)$.) May settle into an isothermal distribution: $\rho_X \sim e^{-r/(2r_\star^2)}$, with

$$r_{\star} = \left(\frac{3T_{\odot}}{4\pi Gm_X \rho_{\odot}}\right)^{1/2} \simeq 2 \times 10^{-3} R_{\odot} \left(\frac{\text{TeV}}{m_X}\right)^{1/2} \left(\frac{T_{\odot}}{10^7 \,\text{K}}\right)^{1/2} \left(\frac{150 \,\text{g cm}^{-3}}{\rho_{\odot}}\right)^{1/2}$$

Most extreme possibility is a run-away process ending with almost all the DN in a large central state.

But this has constant density, and doesn't annihilate (unless you do extra model building) so no significant effect (neutron stars similar).

15.09.2015

Summary

- 'Nuclear dark matter' is an interesting possibility
- If properties of these states obey scaling laws, this can determine the number distribution from dark nucleosynthesis (attractor solutions)
- Possible to synthesise large-number $(> 10^6)$ states, with either peaked (scaling) or power-law number distributions
- Potential consequences for direct detection, modifies relations to collider constraints, astrophysical signals
- Much remains to be done, e.g. specific models.

Aggregation equations

Direct Detection

Astrophysics & Phenomenology

Backups

Toy Models

Many ways in which nuclear DM could be realised.

• Simplest: Fermion ψ mass M with Yukawa coupling $\lambda \overline{\psi} \psi \phi$ to scalar ϕ of mass m.

Bound state of 2-nucleon system if $\alpha \ge 1.68 \frac{m}{M}$. Natural size of *m* not too far from *M*. Putting together typically $\frac{m}{M} \ge 0.1$ so short range force

 SM with U(1) interactions turned off and small bare quark masses: i.e. SU(N) QCD (N=odd and N=even have interesting differences).

'Pions' have freely adjustable PNGB masses

 $m_{\pi} \sim \sqrt{m_q f_{\pi}} \ll \Lambda$. Interactions are both derivative and non-derivative and spin-dependent. Also large number of meson resonances.