Anomalies in high-energy physics

Andrew Fowlie

July 9, 2015

I am cataloging unresolved experimental anomalies in high-energy physics because

The thing that doesn’t fit is the thing that is most interesting. (Richard Feynman)

Caveat emptor:

If those caveats cannot deter you from attempting to build a theory that explains all my anomalies, I offer a final maxim:

A theory should not attempt to explain all the facts, because some of the facts are wrong. (Francis Crick)

I think some of the “facts” in my list are indeed likely to be wrong. Now that the disclaimers are out of the way, here is the table.






Year Anomaly Experiment Resolutions Significance





1990 Flyby anomalies NASA, see wiki [3] Data from Juno soon Significant for some missions
1998 Pioneer 10 and 11 anomaly NASA [4] Thermal recoil [56] Dead
1999 Dark matter direct detection DAMA/LIBRA [7] ~ 8σ
2000 Muon g - 2 Brookhaven [8] SUSY [9] 3.6σ [10]
2001 Higgs at 98GeV LEP [11] NMSSM [12] 2.3σ (local)
2003 Lithium 7 problem WMAP, see [13] ~ 4σ [13]
2008 “Ghost” multi-muon events Tevatron CDF [1415] Not QCD [16] “54437 ± 14171 ghost events” [15]
2008 High-energy positron excess Pamela [17], AMS [18] Dead? — limited statistics [19] Dead?
2010 Proton radius puzzle See [2021] Many [22] ~ 7σ
2011 Wjj anomaly CDF [23] Many [24] 4.1σ [24], 3.1σ [23]
2011 Top asymmetries D0 [25] ~ 2σ
2013 PeV neutrinos IceCube [26] 2.8σ
2014 WR CMS [27] LR models 2.8σ (local) [27]
2014 σ(pp WW) LHC [282930] SUSY [31] 1 - 2σ [31]
2014 r ~ 0.2 BICEP [32] Dead — dust [33] Dead (was ~ 7σ [32])
2014 ~ 137GeV Higgs CMS [34] BLSSM [35] 2.9σ [35]
2014 Higgs LFV decays CMS [36] Type-III 2HDM [37], Gauged B - L [38] 2.5σ
2014 ttH ℓℓ CMS [39] ~ 2σ
2014 mA ~ 560GeV CMS [40] 1.1σ (global), 2.6σ (local)
2014 Leptoquarks at 650GeV CMS [41] Leptoquarks “a significant excess is observed”
2014 3.5 keV line XMM-Newton telescope [4243] Annihilating DM ~ 4σ [43]
2014 “Hooperon” ~GeV γ-rays Fermi, see [44] 1–40GeV DM to b-quarks [44] ~ 40σ
2015 ~ 80GeV edge in mℓℓ CMS [45] Not SUSY [46], not found by ATLAS [47] Dead? [47], was 2.6σ (local)
2015 Dip in power spectrum at ~ 100 Planck [48] Small
2015 B0 K*μμ form-factor LHCb [49], also see summary [50] Leptoquark [51]/Z [52] p-value = 0.5% (global), 3.7σ (local)
2015 Lepton non-universality in B+ K*ℓℓ LHCb [53] Leptoquark [51]/Z [52] 2.6σ
2015 mA ~ 220GeV ATLAS [54] p-value = 0.014
2015 ~GeV γ-rays in dwarf galaxy Fermi-LAT, see [55] Annihilating DM 3.6σ
2015 Z ℓℓ excess ATLAS [47] SUSY, specifically GMSB 3.0σ (global, only looking near mℓℓ mZ)
2015 B0 K*μμ form-factor (again, persistent) LHCb, preliminary, see talk [56] 3.7σ (“naive”)
2015 Diboson excess ATLAS [57] SU(2) gauge bosons at 2TeV [58] 2.5σ (global, WZ), other hints in CMS and ATLAS [596061]





Bibliography

[1]   Statistical Issues in Searches for New Physics, L. Lyons, (2014), arXiv:1409.1903.

[2]   Discovering the Significance of 5 sigma, _______, (2013), arXiv:1310.1284.

[3]   Wikipedia, Flyby anomaly — Wikipedia, The Free Encyclopedia, 2014. [Online; accessed 26-February-2015].

[4]   Indication, from Pioneer 10 / 11, Galileo, and Ulysses data, of an apparent anomalous, weak, long range acceleration, J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto, et al., Phys.Rev.Lett., 81 (1998), pp. 2858–2861, arXiv:gr-qc/9808081.

[5]   High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly, B. Rievers and C. Lammerzahl, Annalen Phys., 523 (2011), pp. 439–449, arXiv:1104.3985.

[6]   Support for the thermal origin of the Pioneer anomaly, S. G. Turyshev, V. T. Toth, G. Kinsella, S.-C. Lee, S. M. Lok, et al., Phys.Rev.Lett., 108 (2012), p. 241101, arXiv:1204.2507.

[7]   Final model independent result of DAMA/LIBRA-phase1, R. Bernabei, P. Belli, F. Cappella, V. Caracciolo, S. Castellano, R. Cerulli, C. J. Dai, A. d’Angelo, S. d’Angelo, A. Di Marco, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, European Physical Journal C, 73 (2013), p. 2648, arXiv:1308.5109.

[8]   Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, G. Bennett et al., Phys.Rev., D73 (2006), p. 072003, arXiv:hep-ex/0602035.

[9]   Implications of muon g-2 for supersymmetry and for discovering superpartners directly, L. L. Everett, G. L. Kane, S. Rigolin, and L.-T. Wang, Phys.Rev.Lett., 86 (2001), pp. 3484–3487, arXiv:hep-ph/0102145.

[10]   Review of Particle Physics, K. Olive et al., Chin.Phys., C38 (2014), p. 090001.

[11]   Search for the standard model Higgs boson at LEP, R. Barate et al., Phys.Lett., B565 (2003), pp. 61–75, arXiv:hep-ex/0306033.

[12]   Higgs Bosons at 98 and 125 GeV at LEP and the LHC, G. Belanger, U. Ellwanger, J. F. Gunion, Y. Jiang, S. Kraml, et al., JHEP, 1301 (2013), p. 069, arXiv:1210.1976.

[13]   The primordial lithium problem, B. D. Fields, Ann.Rev.Nucl.Part.Sci., 61 (2011), pp. 47–68, arXiv:1203.3551.

[14]   Study of multi-muon events produced in pp collisions at √s = 1.96-TeV, T. Aaltonen et al., (2008), arXiv:0810.5357.

[15]   An additional study of multi-muon events produced in pp collisions at √s- = 1.96 TeV, _______, Phys.Lett., B710 (2012), pp. 278–283, arXiv:1111.5242.

[16]   Comment on the Updated CDF ’Ghost’ Events, N. Bornhauser and M. Drees, (2012), arXiv:1206.3885.

[17]   An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, O. Adriani et al., Nature, 458 (2009), pp. 607–609, arXiv:0810.4995.

[18]   First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV, M. Aguilar et al., Phys.Rev.Lett., 110 (2013), p. 141102.

[19]   High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, L. Accardo et al., Phys.Rev.Lett., 113 (2014), p. 121101.

[20]   Proton Structure from the Measurement of 2S - 2P Transition Frequencies of Muonic Hydrogen, A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, FrancoisBiraben, et al., Science, 339 (2013), pp. 417–420.

[21]   The size of the proton, R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, et al., Nature, 466 (2010), pp. 213–216.

[22]   The Proton Radius Puzzle, C. E. Carlson, (2015), arXiv:1502.05314.

[23]   Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp Collisions at √ -
  s = 1.96 TeV, T. Aaltonen et al., Phys.Rev.Lett., 106 (2011), p. 171801, arXiv:1104.0699.

[24]   What the Tevatron Found?, M. R. Buckley, D. Hooper, J. Kopp, A. Martin, and E. T. Neil, JHEP, 1110 (2011), p. 063, arXiv:1107.5799.

[25]   Forward-backward asymmetry in top quark-antiquark production, V. M. Abazov et al., Phys.Rev., D84 (2011), p. 112005, arXiv:1107.4995.

[26]   First observation of PeV-energy neutrinos with IceCube, M. Aartsen et al., Phys.Rev.Lett., 111 (2013), p. 021103, arXiv:1304.5356.

[27]   Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at √-
 s = 8 TeV, V. Khachatryan et al., (2014), arXiv:1407.3683.

[28]   Measurement of W+W- production in pp collisions at √ -
  s=7TeV with the ATLAS detector and limits on anomalous WWZ and WW couplings, G. Aad et al., Phys.Rev., D87 (2013), p. 112001, arXiv:1210.2979.

[29]   Measurement of W+W- and ZZ production cross sections in pp collisions at sqrt(s) = 8 TeV, S. Chatrchyan et al., Phys.Lett., B721 (2013), pp. 190–211, arXiv:1301.4698.

[30]   Measurement of the W+W- Cross section in pp Collisions at √ -
  s = 7 TeV and Limits on Anomalous WWγ and WWZ couplings, _______, Eur.Phys.J., C73 (2013), p. 2610, arXiv:1306.1126.

[31]   ‘Stop’ that ambulance! New physics at the LHC?, J. S. Kim, K. Rolbiecki, K. Sakurai, and J. Tattersall, (2014), arXiv:1406.0858.

[32]   Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, P. Ade et al., Phys.Rev.Lett., 112 (2014), p. 241101, arXiv:1403.3985.

[33]   Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, R. Adam et al., (2014), arXiv:1409.5738.

[34]   Properties of the observed Higgs-like resonance using the diphoton channel, Tech. Rep. CMS-PAS-HIG-13-016, CERN, Geneva, 2013.

[35]   Double Higgs peak in the minimal SUSY B-L model, W. Abdallah, S. Khalil, and S. Moretti, (2014), arXiv:1409.7837.

[36]   Search for Lepton Flavour Violating Decays of the Higgs Boson, Tech. Rep. CMS-PAS-HIG-14-005, CERN, Geneva, 2014.

[37]   Explaining the CMS Higgs flavor violating decay excess, D. A. Sierra and A. Vicente, (2014), arXiv:1409.7690.

[38]   Explaining h μ±τ, B K*μ+μ- and B +μ-∕B Ke+e- in a two-Higgs-doublet model with gauged Lμ-Lτ, A. Crivellin, G. D’Ambrosio, and J. Heeck, (2015), arXiv:1501.00993.

[39]   Searches for the associated ttH production at CMS, L. Rebane, (2014), arXiv:1411.4131.

[40]   Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state, Tech. Rep. CMS-PAS-HIG-14-011, CERN, Geneva, 2014.

[41]   Search for Pair-production of First Generation Scalar Leptoquarks in pp Collisions at sqrt s = 8 TeV, Tech. Rep. CMS-PAS-EXO-12-041, CERN, Geneva, 2014.

[42]   Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein, et al., Astrophys.J., 789 (2014), p. 13, arXiv:1402.2301.

[43]   Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster, A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, Phys.Rev.Lett., 113 (2014), p. 251301, arXiv:1402.4119.

[44]   The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter, T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, et al., (2014), arXiv:1402.6703.

[45]   Search for physics beyond the standard model in events with two opposite-sign same-flavor leptons, jets, and missing transverse energy in pp collisions at sqrt[s] = 8 TeV, Tech. Rep. CMS-PAS-SUS-12-019, CERN, Geneva, 2014.

[46]   A closer look at a hint of SUSY at the 8 TeV LHC, P. Grothaus, S. P. Liew, and K. Sakurai, (2015), arXiv:1502.05712.

[47]   Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in √s = 8 TeV pp collisions with the ATLAS detector, G. Aad et al., (2015), arXiv:1503.03290.

[48]   Planck 2015 results. XIII. Cosmological parameters, P. Ade et al., (2015), arXiv:1502.01589.

[49]   Measurement of Form-Factor-Independent Observables in the Decay B0 K*0μ+μ-, R. Aaij et al., Phys.Rev.Lett., 111 (2013), p. 191801, arXiv:1308.1707.

[50]   State of new physics in b s transitions, W. Altmannshofer and D. M. Straub, (2014), arXiv:1411.3161.

[51]   New physics in B K*μμ?, _______, Eur.Phys.J., C73 (2013), p. 2646, arXiv:1308.1501.

[52]   RK and future b sℓℓ physics beyond the standard model opportunities, G. Hiller and M. Schmaltz, Phys.Rev., D90 (2014), p. 054014, arXiv:1408.1627.

[53]   Test of lepton universality using B+ K++- decays, R. Aaij et al., Phys.Rev.Lett., 113 (2014), p. 151601, arXiv:1406.6482.

[54]   Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √s = 8 TeV with the ATLAS detector, G. Aad et al., (2015), arXiv:1502.04478.

[55]   Evidence for Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum 2, A. Geringer-Sameth, M. G. Walker, S. M. Koushiappas, S. E. Koposov, V. Belokurov, et al., (2015), arXiv:1503.02320.

[56]   C. Langenbruch, Latest results on rare decays from LHCb. https://indico.in2p3.fr/event/10819/session/10/contribution/84/material/slides/0.pdf, 2015.

[57]   Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at √s- = 8 TeV with the ATLAS detector, G. Aad et al., (2015), arXiv:1506.00962.

[58]   Anatomy of the ATLAS diboson anomaly, B. Allanach, B. Gripaios, and D. Sutherland, (2015), arXiv:1507.01638.

[59]   Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at √s- = 8 TeV, V. Khachatryan et al., JHEP, 1408 (2014), p. 174, arXiv:1405.3447.

[60]   Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at √s- = 8 TeV, _______, JHEP, 1408 (2014), p. 173, arXiv:1405.1994.

[61]   Search for massive WH resonances decaying to ℓνbb final state in the boosted regime at √ -
  s = 8 TeV, Tech. Rep. CMS-PAS-EXO-14-010, CERN, Geneva, 2015.